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Programming by Demonstration for Shared Control

with an Application in Teleoperation

Martijn J.A. Zeestraten1, Ioannis Havoutis2, Sylvain Calinon3,1

Abstract—Shared control strategies can improve task-
performance in teleoperation. In such systems automation guides
or corrects a human operator. The amount of correction or
guidance that is provided is denoted the level of automation. As
the variety of teleoperation tasks is large, manually specifying
the underlying automation is time consuming. In this work,
we present an approach to program this automated system by
demonstration. Our approach determines the level of automation
online, by combining the confidence of automation and teleop-
erator. We present particular implementations of our approach
for haptic shared control and state shared control. The method
is evaluated in a user study. Although the subjects indicated
they preferred the learned shared control strategies, teleoperation
performance did not improve our metric (task execution time).

Index Terms—Learning and Adaptive Systems, Probability and
Statistical Methods, Teleoperation, Shared Control

I. INTRODUCTION

TELEOPERATION has been a key drive for robotics

research. It stems from the pragmatic need to perform

tasks in remote environments. These tasks occur in a broad

application domain, ranging from deep sea to outer space.

Traditionally, the robot motion is directly controlled by the

operator. In such systems, the performance of the operator is

improved by increasing the transparency of the teleoperation

system, and by providing her a feeling of presence [1].

Virtual assistance can further improve the teleoperator

performance [2], [3]. Such systems share or delegate task

execution to an assistive system, with the aim of reducing the

operator’s cognitive load. The reduced cognitive load could

allow the teleoperator to perform teleoperation for longer

periods of time.

Often, shared control approaches make use of virtual fix-

tures. These constraint the manipulability of a robot by re-

stricting the system state to a defined space (area/volume).

Metaphorically, a virtual fixture can be seen as a ruler which
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aids users to draw straight lines [4], [5]; its use significantly

improves task performance [4], [6], and reduces mental work-

load [5].

In teleoperation, virtual fixtures can prevent the remote

robot, the slave, to collide with the environment. For another

example, virtual fixtures can constrain the orientation of a

tool to remain perpendicular to a wall. This way, the operator

controls the position of the end-effector while the assistive

system handles its orientation. Ideally, the operator performs

the intelligent part of a task—deciding where to drill—while

the assistance handles the trivial part—the perpendicular con-

straint.

Virtual fixtures are often hand-coded as attractors or repul-

sors that drive the system towards or away from a certain

state [5]. However, the wide variety of tasks that can benefit

from virtual fixtures make manual coding a daunting task. We

argue that the user-friendly interface offered by Programming

by Demonstration (PbD) [7] can alleviate this problem, and

propose to program virtual fixtures by demonstration.

Depending on the implementation, virtual fixtures can either

be seen as a form of semi-autonomous control or shared

control. In this paper, we distinguish the two by the way

human and automation control a system. We define a control

system to be semi-autonomous when the control of the state

variables is separated. For example, consider a task that

requires the control of both position and orientation of the

robot end-effector. This task is performed semi-autonomously

when the human controls the position manually, while the

orientation is controlled by the assistive system. On the other

hand, in shared control state variables are jointly controlled by

the human and assistive system. The weighting of the control

inputs determines the level of automation.

The control intentions of human and automation can be

combined at different levels. The majority of virtual fixtures

can be seen as a form of Haptic Shared Control (HSC) [5],

[8], where the intentions are mixed at the operator interface

through haptic interaction, see for example [3], [4], [9], [10].

The haptic communication between operator and assistive

system is appealing because it makes the human operator

fully aware of the intentions and output of the control system.

Furthermore, it relies on human proprioception, which, unlike

the visual or auditory senses, is rarely occluded.

Alternatively, the intentions of the operator and assistive

system can be mixed after the interface, at the state level.

In this case, states given by the operator and the assistive

system are fused through a weighted combination. We call

this form of shared control State Shared Control (SSC), but

other names are used throughout literature: for example, input-
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mixing shared control [11], mixed initiative control [12], input

blending control [13] or policy blending [14]. As SSC does not

require physical interaction with the operator, it leaves room

for vision-based user-interfaces.

Learning of virtual fixtures is a topic of active research.

Recently, Raiola et al. [10] demonstrated a shared control

approach that learns virtual fixtures from data. The user can

add new fixtures to the system in order to adapt to new ma-

nipulation examples. Bodenstedt et al. [15] presented a semi-

autonomous system which controls the end-effector orientation

autonomously, while the operator controls its translation man-

ually. The assistive behavior is programmed by demonstration.

Havoutis et al. [16] presented an SSC approach that merges

the movements generated by a task model and a human

operator. In this approach, the task model is programmed by

demonstration.

Abi-Farraj et al. [17] presented a semi-autonomous ap-

proach which encodes tasks as trajectory distributions. These

distributions are iteratively refined through collaborative task

executions. Pérez-del-Pulgar et al. [3] proposed a method to

learn HSC by demonstration and assess their method on a

peg-in-hole task. During a demonstration phase they record

the position of the end-effector and the interaction forces and

torques. During reproduction, they infer the desired position

from the measured interaction forces and torques using Gaus-

sian Mixture Regression (GMR).

Pervez et al. [18] highlight alignment difficulties faced

by PbD when handling multiple or partial demonstrations.

These arise due to the presence of a temporal signal. In the

approach that we present, we avoid the encoding of temporal

information. We find temporally driven motions not well-

suited for assistive teleoperation, as they force the teleoperator

to follow a pre-defined temporal behavior.

Our work is similar to Havoutis et al. [16]. We advance it

in two directions. First, our proposed approach relies on the

Riemannian framework presented in [19], [20]. This allows

the consideration of generic rotation in 3D-space. Second, we

present approaches to learn both SSC and HSC strategies,

while Havoutis et al. [16] only considered SSC.

This paper is organized as follows: First, our Riemannian

approach for PbD [19] is reviewed in Section II. Section III

introduces the shared control strategies HSC and SSC in

more detail, and discusses how they are programmed by

demonstration. Finally, we evaluate and discuss the approach

in sections IV and V.

II. PRELIMINARIES

The methods that are presented in this paper involve control

and statistical encoding of end-effector poses: elements of a

Riemannian manifold. Riemannian manifolds are not generally

Euclidean, and common approaches for control and statistics

cannot be directly applied to Riemannian data. In previous

work, we presented a probabilistic framework for PbD [19]

and a Linear Quadratic Regulator (LQR) [20] for Riemannian

data. This section reviews the concepts of statistics and LQR

on Riemannian manifolds.

We start with the geometric concepts of distance and

straightness. The distance between two points in a Euclidean

space corresponds to the length of the straight line (segment)

connecting them. A geodesic is the generalization of the

straight line from a Euclidean space to a Riemannian manifold.

Similarly to Euclidean spaces, the distance between two points

on a Riemannian manifold corresponds to the length of the

geodesic (segment) connecting them.

At each point p of the d-dimensional Riemannian Manifold

one can define a Euclidean tangent space R
d. We indicate

elements of the manifold in bold and elements on the tangent

space in fraktur typeface, i.e. p ∈ M and g ∈ TpM.

The exponential map Exp : TpM → M defines a local

mapping between the tangent space and manifold. Expp(g)
maps g ∈ R

d in such a way that the length of g equals the

length of the geodesic between g and p. The inverse of the

exponential map is the logarithmic map Log : M → TpM.

These distance-preserving maps between the linear tangent

space and the manifold allow computations to be performed

on the manifold indirectly; they provide a way to perform

computations that involve end-effector poses. Note that the

implementation of the mappings is manifold specific (see e.g.

Table I in [19]).

In PbD, task models are often described in a Gaussian-

based probability density function (pdf). The Gaussian distri-

bution is popular due to theoretical and practical reasons. The

Riemannian equivalent of the Gaussian distribution is often

approximated by

NM(x;µ,Σ) =
1

√

(2π)d|Σ|
e−

1

2
Logµ(x)

⊤
Σ

−1 Logµ(x), (1)

because the exact solution is computationally impractical [21].

Here, x,µ ∈ M and Σ ∈ S+ (the group of positive definite

matrices) are defined in the tangent space of the point µ. Note

that the Euclidean difference x−µ in the Mahanalobis distance

is replaced by the Logarithmic map Logµ(x).
Akin the Gaussian distribution, MLE, product and condi-

tioning operations exists for the Riemannian Gaussian. We

exploit these properties in our shared control methods to

estimate the parameters of the Gaussian from demonstration

data (MLE), combine statistical information from different

sources (product), and infer the system state (conditioning).

The result of these operations is approximated by a Rieman-

nian Gaussian. Its center is found through a Gaussian-Newton

optimization whose update rule is given by

µk+1 ← Expµ
k
(∆) . (2)

After convergence the covariance can be computed. Table I

provides an overview of the formula required to compute ∆

and Σ for the operations mentioned.

We approximate more complex distributions using a mixture

of Riemannian Gaussians

P (x) =
K
∑

i=1

πiNM(x;µi,Σi) , (3)

where πi are the priors, with
∑K

i
πi =1. The parameters of

this Gaussian Mixture Model (GMM) can be estimated using

Expectation Maximization (EM), an iterative process in which

the data are given weights for each cluster (Expectation step),



ZEESTRATEN et al.: PROGRAMMING BY DEMONSTRATION FOR SHARED CONTROL WITH AN APPLICATION IN TELEOPERATION 3

∆ Σ

M
L

E

1∑
N

i
hi

N
∑

n=1

hi Logµ(xn)
1∑
N

i
hi

N
∑

n=1

hi Logµ(xn) Logµ(xn)
⊤

P
ro

d
u

ct

(

P
∑

p=1

Σ
−1

‖p

)−1
P
∑

p=1

Σ
−1

‖p
Log

µ

(

µp

)

(

∑P
p=1

Σ
−1

‖p

)−1

C
o

n
d

it
io

n

Log
xO

(µ
O
) +Λ

−1

‖OO
Λ

⊤

‖OI
Log

xI
(µ

I
) Λ

−1

‖OO

TABLE I: Overview of the equations required for Gaussian MLE, conditioning and product.

and the clusters are subsequently updated using a weighted

MLE (Maximization step). We refer to [22] for a detailed

description of EM for Riemannian GMMs.

Statistical inference of GMM is done efficiently using GMR.

Similar to conditioning, this requires an iterative procedure

to handle the potential non-linearities of the Riemannian

manifold. The mean is computed as

∆ =

K
∑

i=1

hi Logµ̂O
(E[N (xO|xI;µi,Σi)]) , (4)

µ̂
O
← Expµ̂O

(∆) . (5)

and the covariance is computed after convergence

Σ̂O =

K
∑

i

hi Σ‖i, where (6)

Σ‖i = A‖
µ̂O

µ
i

(Li)
⊤

A‖
µ̂O

µ
i

(Li) , (7)

and Σi = LiL
⊤

i . Where A‖
b

a
() is an operator that parallel

transports vectors from the tangent space at a to the tangent

space at b (see [19] for details).

In this work, we employ LQR to generate haptic feedback

on the end-effector orientation. The introduction of LQR sim-

plified the design of optimal controllers for linear dynamical

systems. It provides a way to control gains of a state feedback

controller by defining a state and control cost matrix. In [20],

we showed how the state cost can be obtained through PbD

by relating it to the correlation information observed in the

demonstration data. Even though robot poses are elements of a

Riemannian manifold, the correlation information is described

in the Euclidean tangent space. Therefore, we can still define

a quadratic cost-function

c =
1

2

∫

(

Logµ̄(p̄)
⊤

Q Logµ̄(p̄) + u
⊤Ru

)

dt, (8)

with state cost matrix Q and control cost matrix R. p̄ = (p, ṗ)
and µ̄ = (µ,0) are the current and desired state augmented

with their first derivatives.

Furthermore, we can also define a linearized system at the

setpoint of the LQR, namely
[

ė

ë

]

=

[

0 I

0 −M−1C

] [

e

ė

]

+

[

0

M−1

]

. (9)

with inertia matrix M and damping matrix C, and e =
Logpd

(p). The controller minimizing the cost-function (8)

subject to the liner time-invariant system (9) is of the form

u = LLogµ̄(p̄) . (10)

The gain matrix L can be determined by solving an Algebraic

Ricatti Equation, as in standard LQR [23].

III. PROGRAMMING SHARED CONTROL BY

DEMONSTRATION

In shared control, system state is jointly controlled by a

human and an assistive system. The amount to which they

can influence the system state defines the level of automation

[8]—the degree to which a system is automated. The lowest

level of assistance yields manual control, while the highest

level of assistance results in a fully automated system.

We propose a system that relates the level of automation to

the confidence of its inputs. This is achieved by taking into

account the confidence level when combining the inputs of

the shared control system. When both human and assistance

are equally confident, their inputs will be weighted equally.

Likewise, when one of the inputs has higher confidence, it

will be weighted more heavily.

In our system confidence is expressed by positive-definite

matrices. This allows the assignment of confidence on individ-

ual state-variables, as well as confidence coupling among state

variables. By combining confidence with a desired state, the

intentions of both human and automation can be represented

by a Gaussian, namely:

NH = NH(µH ,ΣH), (11)

NA = NA(µA,ΣA). (12)

Here, the center µ of the Gaussian represents the desired

state, and its precision Λ = Σ
−1 provides a measure of

confidence. The internal model of the assistive system is

represented by a GMM, which we denote the task model.

The desired state, with a corresponding confidence level, NA,

is thus obtained straightforwardly using GMR. The resulting

Gaussian has a full covariance matrix encoding both variance

and correlation among the state variables. The parameters of

NH are set manually, as will be discussed later in this section.

BecauseNA is computed online, the confidence of the assistive

system can change at each time step. As a result, the level of

automation is continuously re-evaluated. This creates a shared

control system that shifts control authority online depending

on the confidence of the user and the assistive system.

The remainder of this section describes the proposed method

in detail. Section III-A discusses how the assistive system

can be programmed by demonstration. Then, Section III-B

describes two different methods in which the intentions of
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human and assistive system can be combined. Finally, we

discuss different structures for the confidence representation

in Section III-C.

A. Programming skill models by Demonstration

Instead of pre-defining the behavior of the assistive system,

we program it by demonstration. We start by collecting a set of

example motions. In most teleoperation scenarios, we would

be interested in the position and orientation of the robot end-

effector. In this scenario, a dataset required to learn a skill

would consist of N end-effector poses x.

Based on the example motions, we learn a Riemannian

GMM using the method described in Section II. This model

reflects motion data that are identical, recurring, and accurately

performed as Gaussians with low variance. These Gaussians

capture the invariant behavior of the demonstrations—a feature

that we exploit during online feedback/motion generation.

We want to ensure that the assistive system only provides

assistance in areas where we have learned the skill. This is

achieved by incorporating a prior into the model which yields

non-assistive behavior. This prior is represented as a Gaussian

with large variance and added to the GMM. In practice, this

Gaussian will be ‘activated’ when the user enters areas where

no skill has been demonstrated. The large variance makes HSC

fully compliant, and ensures that SSC ignores the state desired

by the assistive system.

Since the skill is modeled as a joint pdf P (xO,xI) rep-

resented as a GMM, we can perform statistical inference

using GMR. This estimation yields a Gaussian distribution;

e.g N
(

µO|I,ΣO|I
)

parameterized by an expected state µO|I ,

and covariance Σ
O|I (I andO correspond to the input and output

variables, respectively).

B. Shared Control Strategies

To achieve shared control, we need to define how the

control intentions of the user and the assistive system are

combined. We consider two different ways, namely: SSC and

HSC. The block diagrams displayed in Figure 1 illustrate

the different methods. The methods are distinguished by the

level at which the inputs of the actors are combined. We first

discuss our implementation of each approach separately, and

then highlight their differences in more detail.

1) State Shared Control (SSC): SSC combines the inputs

after the interface on which the human operates. As depicted

in Figure 1a, both human and automation generate a control

input with a confidence level. Both inputs are represented

by a Gaussian: NA and NH . Since both Gaussians encode

state variables, we can combine them using Gaussian product:

Nd = NANH . The Gaussian product produces a weighted

average of the centers of NA and NH that takes into account

the variance of the individual variables and correlation among

the variables. In effect, this fuses the state issued by the

operator with the state predicted by the automation. The

product takes into account the confidence of the actors, as

this is expressed in the covariance matrices.

2) Haptic Shared Control (HSC): HSC combines the inputs

at the user interface, as depicted in Figure 1b. The input

of the agent is conveyed to the human agent through forces

applied at the user interface. The operator can either comply or

resist these forces. This effectively establishes a shared control

system.

We propose to generate the haptic forces or torques using

LQR. This is achieved using the cost function

c =

∫

(xs − µA)
⊤
Σ

−1
A

(xs − µA) + u⊤

ARHuA (13)

with xs the current state of the control interface, u the control

input applied to the haptic interface, and RH a control cost

that corresponds to the confidence of the operator. Solving this

optimal control problem yields a gain matrix L, that is used

in the actuation command of the haptic interface

uA = −L(µA − xs). (14)

This actuation is felt by the human operator as FA. By

displaying the input of the assistive system at the control

interface, HSC achieves a high automation awareness. Fur-

thermore, the operator is fully aware of the outcome of the

input mixing, because it corresponds to the current state of

the haptic interface.

The level of automation results from the combination of

tracking cost Σ
−1 (automation confidence) and control cost

RH (human confidence), as these values determine the haptic

feedback forces. When these forces are such that the human

cannot resist them, the system acts autonomously. Manual

operation, on the other hand, is achieved when the operator

cannot detect the forces. This system thus generates a contin-

uous range of autonomy levels.

3) Illustrative Comparison: We illustrate the differences

between SSC and HSC using Figure 2. The graphs show that

the output values of the shared control systems (thick blue

line) differ. In SSC, the output of the shared control system is

the trade-off between the user and assistive input. In contrast,

the output of HSC corresponds to the input of the user. Here,

we assumed the user counters the force generated by the haptic

system (indicated by the blue arrows). HSC thus maintains a

direct relation between the state of the interface and the state

of the slave robot, while in SSC the state of the interface is not

guaranteed to reflect the state of the slave robot. Furthermore,

the product of Gaussians used in SSC provides a confidence

measure on the output. This measure can be used to determine

the stiffness and potential synergies of the slave’s end-effector,

as discussed in our previous work [20]. Such information is

not available for HSC.

C. Confidence structures

The covariance matrix supports a rich expression of confi-

dence. Yet, this support comes at a cost: the amount of pa-

rameters to specify. By constraining the covariance structure,

the number of parameters that needs to be specified can be

reduced.

Figure 3 illustrates how a variety of mixing behaviors can

be achieved using different covariance structures. Isotropic
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(b) Haptic Shared Control (HSC)

Fig. 1: Block diagrams visualizing the shared control strategies considered in this work.

NA

NANH

x
O

xI

NH

(a) State Shared Control (SSC)

FA

NA

NH

x
O

xI

(b) Haptic Shared Control (HSC)

Fig. 2: Illustration of the proposed shared control approaches

on the variable xO. The input and confidence of the human

(yellow) and assistive system (red) are visualized by the lines

and the shaded areas, respectively. The outcome of the shared

control method is visualized in blue. See Section III-B for

further description.

x1

x
2

NH

NA

NHNA

(a) Isotropic

x1

x
2

NH

NA

NHNA

(b) Diagonal

x1

x
2

NH

NA

NHNA

(c) Full

Fig. 3: Input mixing using different covariance structures (a–

b). The control input of Human operator (H) and autonomous

agent (A) are visualized by the yellow and red Gaussians

(ellipsoids), respectively. The mixed control input is visualized

by the blue Gaussian. The ellipsoid center indicates the desired

state, and its contour the covariance.

Gaussians (Σ = βId) put an equal weight on all control

variables, but only require specifying one parameter. Diagonal

covariance matrices (Σ = diag(β1, ... , βd)) allow separate

weighting on the individual dimensions using d parameters.

Full covariance matrices allow the handling of coupling among

variables, but require defining d(d + 1)/2 parameters. Al-

ternatively, the number of parameters can be reduced using

subspace clustering as demonstrated by Tanwani et al. [24].

Note that the illustrations are based on SSC (product of

Gaussians). In HSC, the structure of the control cost matrix

RH can be used to represent the operator’s confidence, as it

influences the overall stiffness of the HSC system.

In our experiments, we use the demonstration data to esti-

mate full covariance matrices for the automation, but manually

define the operator confidence using a diagonal covariance

matrix. This keeps the number of open parameters low.

IV. EXPERIMENTAL EVALUATION

A. Scenario

The Large Hadron Collider (LHC) at CERN in Switzer-

land is a hazardous environment. Radiation inside the LHC

poses a health thread to maintenance personnel. Currently,

maintenance schedules include a period to allow radiation to

decay and create a safe working environment. Teleoperation

can reduce downtime due to maintenance, as it removes the

decay period from the maintenance schedule.

The experimental task is part of the maintenance procedure

of a collimator—a device used to parallelize particle beams.

The LHC can contain up to 152 collimators, which are located

in radioactive areas [25]. This maintenance procedure involves

the removal and replacement of a protection cover. Removal

of the cover is achieved by sequentially moving towards it,

grasping it, unlocking it using a 10 degree clockwise rotation,

and sliding it from the locking pins (see Fig. 4b).

B. Experimental setup

The experimental setup, visualized in Figure 4, consists of

two Barrett WAM 7-DOF robots and a 1:1 mock-up of the

collimator. The left WAM acts as the master device, and is

equipped with a haptic ball that allows the teleoperator to

control the end-effector pose of the slave. The WAM pictured

on the right acts as the slave and is equipped with a three

fingered hand (Barrett BH8-280). The hand is programmed to

have two states (pre-grasp, and grasp) which are activated by

the operator. The mock-up of the collimator contains all parts

required for this particular maintenance scenario.

C. Experimental procedure

The virtual fixture is programmed through kinesthetic teach-

ing; we collect data while manually moving the robot to per-

form the maintenance operation. Although kinesthetic teaching

cannot be applied on site, it can be used in a safe environment
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Master

Slave Collimator

(a) Setup (b) Task

Fig. 4: Visualization of experimental setup. Refer to Sec. IV for a detailed description.

prior to the execution of the teleoperation task. Alternatively,

one could use demonstration data of an expert teleoperator.

We demonstrated a number of successful removal and

replacing attempts of the cap. For each demonstration we

recorded position and orientation of the robot end-effector and

the collimator. To allow the transfer of the demonstrated skill

to different poses of the collimator, we project the recorded

end-effector poses in the collimator frame, i.e. the collimator

pose represents the task context. The projected data are en-

coded in a Gaussian N (µskill,Σskill), with µskill ∈ R
3 × S3

and Σ
skill ∈ SPD(6). In addition to the trained behavior, we

define a variant Gaussian N (µvar,Σvar) with relatively large

covariance (Σvar = 10 · I6), at the origin of collimator base.

This Gaussian ensures that, outside the area of demonstrations,

HSC is fully compliant and SSC follows the intentions of the

operator. The skill and variant Gaussians are combined in a

GMM with equal prior πi = 0.5.

The experiment evaluates 3 different control conditions: (1)

Manual control (MAN), (2) HSC, and (3) SSC. The shared

control methods are used to assist the teleoperator in orienting

the end-effector. The desired state of the assistive system is

obtained by computing the conditional probability P (q|x); a

distribution of the desired orientation q given an end-effector

position x. For SSC we set ΣH = diag(0.5, 0.5, 0.001). In

effect, these settings provide the operator with full control on

the rotational axis required for the (un)locking motion of the

task. On the other axes the autonomous system has higher con-

fidence. Outside the task area the operator has full control over

the position and orientation of the robot. For HSC we selected

the control cost matrix R = diag(75, 75, 150), resulting into

approximately equal resistance among all rotational axes.

The 3 control conditions are tested for two different loca-

tions of the collimator (P1 and P2). By changing the location

of the collimator, the movements required to remove the cap

change significantly. In total 6 trials are performed by each

subject (3 control conditions, 2 collimator positions).

We recruited 11 healthy subjects, aged 22–34, that had no

prior experience in teleoperation. During the teleoperation the

subjects could visually observe the slave robot and the colli-

mator. This is expected to give the subjects better situational

awareness, compared to observing the collimator through a

2D vision system, as traditionally used in teleoperation. Yet,

part of the scene is still occluded by the hand and arm of

Fig. 5: Visualization of the trained skill on the collimator.

The bound of the yellow ellipsoid indicates one standard

deviation of the position covariance. The ellipsoid center

indicates the mean. The orthogonal colored lines indicate the

mean orientation. The colored ellipsoids at the end of each

axis indicate 4 standard deviation of the rotational covariance.

the slave. Each subject was shown how to perform the task

using teleoperation and was allotted to train the removal and

replacement of the cap using all control conditions. The train-

ing phase is conducted on location P0. Despite the training

prior to the experiment, we expected subjects to improve

their performance throughout the experiment. To avoid such

skill improvement to delude the experimental outcome, we

randomized the order of the experimental conditions within

trials. An example of the order of task executions is: (MAN,

HSC, SSC), (HSC, MAN, SSC). Before each trial, the subjects

were informed about the type of assistance they would receive.

During each trial we record position and orientation

of master, slave and collimator, the state of the hand

(grasped/released) and the trial duration. In addition, we asked

each subject to fill out a questionnaire about their experience

with the proposed shared controllers.

D. Results

1) Probabilistic Skill Model: We demonstrated the task on

the collimator using kinesthetic teaching (see Figure 4b). The

obtained model is visualized in Figure 5. The figure shows the

behavior demonstrated around the cap. The small rotational

covariance indicates a fixed orientation of the end-effector,

and the positional covariance indicates the desired direction

of motion.
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Fig. 6: Summary of the phase durations for the three teleoper-

ation conditions, evaluated at two locations of the collimator.

GRASPING REMOVAL REPLACING

MAN 6= HSC 0.62, 0.21 0.47, 0.16 0.69, 0.24
MAN 6= SSC 0.06, 0.25 0.64, 0.40 0.63, 0.75

TABLE II: Overview of the paired t-test results. Null hypoth-

esis: Phase durations of manual teleoperation and the shared

control strategy are the same. The entries of the table display

the significance level for the two locations of the collimator

(P1, P2).

During the reproduction phase we generate orientation as-

sistance for the teleoperator. This is achieved by estimating

the desired orientation q based on the current position x of

the slave end-effector; i.e. P (q|x) ∼ N
(

µq|x,Σq|x
)

. This

distribution forms the input of the assistive system.

2) Summary of Experimental Results: We assess the quality

of assistance given by the shared controllers based on duration

of the different phases in the task. We distinguish three

phases in the cap task, namely GRASPING, REMOVAL and

REPLACING. The duration of each of these phases is computed

based on the position and grasping signals of the hand. The

position signal allows us to determine the location of the end-

effector with respect to the collimator. We define a sphere of

radius 0.08[m] around the cap which we call the manipulation

zone. The grasping time is defined as the duration between

entering the manipulation zone and activating the grasp. The

removal time is defined as the duration between issuing the

grasp command and exiting the manipulation zone. Finally, the

replacement time is defined as the duration between entering

the manipulation zone for the second time and releasing the

grasp.

The measured durations are summarized in Figure 6. The

results do not display clear differences between the control

strategies or positions. To ensure this observation is correct,

we performed a paired t-test comparing the results of manual

teleoperation with each of the shared control strategies. These

results are listed in Table II, and demonstrate that there exist

no significant differences (p < 0.05) in phase duration among

the control methods.

Table III lists the results gathered from the questionnaire.

The subjects were asked to answer each question by selecting

one out of five options, which ranged from ‘absolutely not’

to ‘yes, absolutely’. These answers were linearly transformed

into the range [−2, 2]. Furthermore, we asked the subjects to

indicate which form of the teleoperation they preferred: MAN

(18%), HSC (27%) and SSC (55%).

Question: Did you... Mean Std

H
S

C

A find the provided guiding forces useful? 0.00 1.28
B had to ‘fight’ the provided assistance? 0.55 0.89
C feel in control while being assisted by forces? 0.36 0.88

S
S

C

A find the provided orientation correction useful? 0.82 0.57
B had to ‘fight’ the provided assistance? −0.73 1.35
C feel in control while being assisted? 1.09 1.08

TABLE III: Outcome of subjective evaluation. See Sec-

tion IV-D for discussion of the results.

V. DISCUSSION

The presented work shares similarities with [10]. Nonethe-

less, our methods are different. Namely, both with SSC and

HSC, we perform Gaussian regression from position to orien-

tation while the work in [10] activates a virtual fixture based

on a notion of closeness.

We demonstrated the implementation of our approach in a

real-world scenario. Both HSC and SSC can be trained on

demonstrations and used in reproduction, providing a varying

level of autonomy. Although most of the subjects indicated

that they prefer a form of shared control while performing

teleoperation, our subjective evaluation does not show that

either HSC or SSC increases the teleoperation performance

for our chosen measure. As this contradicts previous work on

shared control [2], [4], [8], we discuss potential sources that

could have caused this contradiction.

The task on which we evaluated the shared controllers

was found difficult by our subjects. We found that users

experienced difficulty removing and placing the cap over the

two lock pins. This procedure is eased by a proper orientation

of the end-effector, as provided by the shared controllers. Yet,

additional fine manipulation was still required to remove or

place the cap. In case the cap collides with the environment

during the replacement, it slips within the hand. This makes

replacement of the cap more difficult, as the orientation desired

by the model mismatches the one required for replacement.

Both of these issues can be removed by modifying the environ-

ment, but such modifications make application less realistic.

Finally, a different input device can be considered. The

WAM provides the user with a one-to-one mapping between

the master and the slave. However, moving it physically might

be too bulky for our subjects. A smaller device, for example

the Omega6 from Force Dimension, that is traditionally used

for haptic interaction might be more intuitive and easy to

use in future experiments. In our current implementation, we

heuristically set the operator confidence for HSC and SSC.

These values influence the level of automation that the subjects

experiences. Using the current settings the subjects indicate

they had to fight the forces provided by HSC (see Table III

HSC.B). While the subjects disagreed this was the case for

SSC (see Table III SSC.B), it indicates that thorough studies

investigating the level of automation a user desires are further

required.

In this work, we manually set the confidence on the user

input. In practice, the teleoperator would do this via the control

interface. Usmani et al. [26] take a different approach, and

let the shared-control system judge the confidence of the user
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input. The input confidence is based on the user Field of View

(FoV): the user will receive low confidence on the control of

state variables that cannot be properly estimated by the user,

given its FoV. Although this provides an interesting extension

to our approach, it also raises a fundamental question: who

has the final say in control authority, the user or the assistive

system?

In our approach the assistance is programmed offline: the

demonstrations are collected and modeled during a training

phase, and assistance is provided during a reproduction phase.

Online programming of assistance would be an interesting

extension. In this direction, Peternel et al. [27] proposed a

Locally Weighted Regression (LWR) approach for SSC with

binary control authority assignment. Extensions that consider

continuous authority assignment and haptic feedback (HSC)

are considered valuable but challenging, as it couples two

adaptive systems (human and assistance).

VI. CONCLUSION

In this work, we proposed methods to generate shared

control strategies for two different types of shared control,

namely: SSC and HSC. We showed how current techniques

for PbD can be used to generate shared control strategies that

involve end-effector orientation.

We evaluated the approach on a realistic teleoperation

scenario through a user study. The outcome of this study

suggests that users prefer the learned shared control strategy

over manual control. However, they were not unanimous in

the preferred form of shared control. Our objective evaluation

was not able to demonstrate that the learned shared control

strategies decreased execution time of the teleoperation task.

The use of an alternative interface, additional metrics, or a

more constrained experimental environment are considered as

ways of generating more distinctive results.

Besides extending the experimental evaluation, we aim at

extending the developed method. In our current approach we

manually set the input/output relation used in the regression,

i.e. we manually decided to infer the desired orientation based

on the position. Instead, determining this from data could

result in discovering synergies (coupling movement relations)

that are not easily perceivable and could have been overlooked

when designed manually. Future work will focus on automatic

selection of these causal relations.
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