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Abstract— An extension based on attention and anticipation of a
robot vision pipeline for object recognition in RGBD images from
low-cost sensors like MS Kinect or ASUS Xtion is presented. This
work originated in research on an industrial application scenario,
namely shipping-container unloading, but it is applicable to advanced
manipulation tasks in unstructured environments in general where the
perception must be very robust while being as fast as possible. For these
scenarios, we build on our previous work that proved to be competitive
in cluttered scenes in table-top scenarios and which forms the backbone
of our RGBD object recognition. It is further enhanced by two main
contributions. First, a simple but very effective form of anticipation as
top-down expectations of the evolution of the scene due to the actions
of the robot is used to speed up the processing. Second, attention is
used as a mechanism for further speed-up by focusing processing only
on certain regions of interest of the scene based also on an anticipation
mechanism. The method is analyzed in experiments using real-world
data from an industrial demonstration set-up.

I. INTRODUCTION

Fig. 1. The demonstration set-up for shipping container unloading, located
at the Institute of Production & Logistics (BIBA) in University of Bremen.
The two images show objects being autonomously unloaded using two
different grippers - Velvet Fingers gripper [1] (top), and a suction gripper
(bottom).

The work presented here deals with challenging scenarios for
object recognition with especially high demands on robustness and
processing speed. This research originates from work on object
recognition and localization in single RGBD images in the context
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Fig. 2. Scenario with underwater manipulation tasks to be carried out in
the context of the DexROV project [2] where intelligent support functions
on the vehicle itself are executed to aid the operation by a human controller
on-shore who is connected with severe communication latencies.

of the development of a system for the fully automated unloading of
heterogeneous goods from shipping containers [3]. The hardware
set-up for such a container unloading demonstrator is shown in
Fig. 1. But the presented work is applicable for perception and ma-
nipulation tasks in general, especially in unstructured environments
like underwater applications where RGBD data from stereo cameras
is an interesting option as basis for perception (Fig. 2).

The research presented here builds upon our previous work in the
context of the ICRA 2011 ”Solutions in Perception Challenge“ for
which we developed a successful object recognition and localization
pipeline [4]. It was shown in our follow-up work [5], [6] that
an extended version of this approach is suitable for a challenging
industrial scenario in terms of robustness and localization precision.
However, improved robustness comes with a cost of a higher
computational time. The cycle time is a critical parameter for an
industrial system, therefore here, we investigate an attention and
anticipation framework with the goal of achieving faster processing
without sacrificing any of the robustness.

Following main contributions are made in this paper. We use
anticipation as a top-down generation of expectations about the
dynamics of the scene with the aim to avoid, when possible,
costly bottom-up processing that is replaced by a computationally
inexpensive reprojection test. To this end, the system anticipates
that all recognized objects except the one that is manipulated remain
static – which is verified in a top down process by a fast reprojection
test of the objects’ models onto their anticipated poses. In addition,
attention is used, i.e., the selection of regions of interest (RoI), onto
which the bottom-up processing is focused. A form of anticipation
is also used here, namely the expectation that manipulated objects
are likely to have occluded other objects and that hence new
information will become available in the regions where they were
placed in the scene.

Sec. II provides an overview of the related work as well as brief
explanation of our approach to attention and anticipation in the
context of container unloading. An important part of the attention
and anticipation framework is the reprojection test and therefore
is explained in more detail in Sec. III. The overall framework is
then described in Sec. IV. The performance improvements due to
attention and anticipation are evaluated in Sec. V. Finally, Sec. VI



concludes the paper.

II. RELATED WORK

A. Anticipation

Anticipation is a core element of human perception [7] which
is also relevant for artificial systems as it can be very beneficial in
increasing processing speed. Anticipation can be seen as a top-down
process that generates hypotheses to predict the future. This can be,
for example, based on a tracking of objects and an extrapolation
of the determined trajectories to predict their future locations [8],
e.g., for obstacle avoidance [9]. We are interested in the prediction
of the physical behavior of objects, especially as direct or indirect
consequences of interactions with the unloading system. One line
of approach in this context uses machine learning on time-series of
raw sensor and motor data, i.e., so to say raw past experiences, to
predict likely sensor data given a state and a series of possible future
motor commands. Examples include Artificial Neural Networks to
predict future sensor-motor relations with a relative simple robot,
namely a Khepera, in a simple environment [10], [11] or Bayes
filtering on vision/motor-data of an autonomous mobile robot to
anticipate places [12].

The approaches using machine learning on raw sensor/motor-
data can only lead to very short prediction time horizon and is
often quite unreliable. More complex anticipation is possible using
Gibson’s notion of affordance [13] [14], i.e., the quality of an object
that allows an agent to perform an action. This can be used to
predict opportunities for interaction [15] [16], which is somewhat
comparable to procedural reasoning [17].

The anticipation strategy used in this work is very simple but
also very effective - as shown in Sec. V, it is robust with good
classification rates while leading to a significant speed-up of the
perception cycles by using only fast top-down processing.

The default perception cycle [4] almost always leads to the
recognition and localization of multiple objects of which only one
is manipulated. The other recognized objects should remain static
- which is a valid assumption. But occasionally one or several
ones of these supposed static objects get perturbed during the
unloading. Ignoring these perturbations, i.e., trying an unloading
of multiple objects recognized/localized in one RGBD snapshot,
would lead to a decrease in the robustness of the unloading
system. Though these perturbations are rare, even the reduction
of a few percent in the recognition/localization rates is undesirable
in an industrial application scenario. Our default perception system
(Fig. 3) hence operated with full cycles on an RGBD snapshot for
each single object to be unloaded - including all the robust but also
computationally expensive bottom-up processing steps.

The anticipation used here uses the hypotheses that all recog-
nized/localized objects that are not manipulated remain static. But
these hypotheses are not taken for granted, they are validated in
a top down process (Fig. 4) that acquires a new RGBD image
and projects the object models onto their anticipated poses and
does a kind of cross-correlation to check whether they are indeed
there. This reprojection test can be done in a fast manner and as
experiments presented in section V show it can successfully detect
whether there are unexpected dynamics in the scene or not.

B. Attention

Attention as a process to focus processing is a second mechanism
that is very helpful to speed-up the perception pipeline. Attention
methods have been intensively researched in the last decade. A de-
tailed survey on computational visual attention systems – including
also the cognitive aspects – can, for example, be found in [18].

Fig. 3. The object recognition cycle in our system consists of bottom-
up (segmentation, feature extraction, candidates selection) and top-down
(model lookup, reprojection tests) perception steps. The default pipeline uses
a sequence that consists of the full perception cycles, i.e., a new snapshot of
RGBD data Mt is taken each time and fully processed with all bottom-up
and top-down modules.

Fig. 4. The use of anticipation is based on the fact that most objects tend
to remain static during the unloading - hence a fast top-down process can
be used to verify this hypothesis for each already recognized object with a
computationally inexpensive reprojection test.

One very popular way to employ attention in perception is to use
saliency, i.e., to use a process on pixel-level that uses neighborhood
information to assess the presence of objects or proto-objects. The
concept of saliency has a strong biological background [19]. The
basic idea is to use a fast process to select regions of interest on
which subsequently more computationally intensive processes are
applied for the actual object recognition or for other perceptual
tasks. But, especially for strongly bio-inspired methods, it can
be challenging to get a fast performance [20], [21], [22] due to
the relatively simple but massively parallel saliency processing
in natural systems. One option is to also employ parallelism for
saliency computations in artificial systems, e.g., by implementing
them with CUDA on a graphics card [23] or by even embedding
them in silicon directly in a chip [24]. Another option is to use
processes that are not necessarily biologically plausible but give a
good trade-off between detecting (proto-)objects and computation
speed [25], [26], [27], [28], [29], [30].

However, there are also other options than saliency for employing
attention in object recognition. For example, attention can be imple-
mented through the use of spatial context to generate expectations
about likely objects, e.g., via GPS information in urban scenarios
[31]. Another option is to use expectations across different sensor
modalities, e.g., be priming visual processing by sound [32]. A
further line of research uses input from Human-Robot-Interaction,
e.g., in form of cues from dialog or gesture processing modules
[33], [34], [35]. Attention can even arise as an emergent side-effect,
e.g., through the dual use of a stereo camera for object search and
navigation on a mobile platform [36].

Our attention mechanism is based on the fact that the regions
of the (re)moved objects, for which their models and hence their
projected contours are known, are the areas where most new
information can be gathered. Especially, objects that are removed



Fig. 5. When one or more objects are removed, new information becomes
available mainly in the areas which have now become unoccluded due to this
removal. This allows us to focus attention by concentrating the perception
processes to the corresponding regions of interest (RoI), hence speeding up
the computations of the different perception steps in a full cycle.

are likely to have occluded other objects about which new infor-
mation will then be available and moved objects need to have their
poses redetermined. Hence the locations of the (re)moved objects
can serve as regions of interest for doing a complete but faster
perception cycle on them (Fig. 5).

III. REPROJECTION TEST

The reprojection test used for the hypotheses verification in the
textured object recognition module [4] is also a crucial part of the
anticipation step. In this section, we provide details of how it is
applied within the recognition module. How it can be utilized in
the anticipation and attention components will be shown in the
subsequent section (Sec. IV).

In the following, we will use the notation of [4] with a summary
provided for the reader’s convenience in Appendix. In general,
scalars are in normal small letters, vectors in bold small letters,
and matrices in bold capitals. For quantities resolved in different
frames, we use the left superscript/subscript notation of [37]. Right
subscripts are used for indexing or for denoting vector components.
If required, the k-th time index is indicated by array indexing, for
example A[k].

In a nutshell, the reprojection test consists of two steps, namely,
projection and verification. Firstly, the anticipated state of the
observed scene is used to generate expected sensor data. For
example, in the context of object hypotheses verification, the state
is represented by the 3D models of objects and their locations with
respect to the sensor as hypothesized by the recognition module. In
the context of change detection in a scene, it can be a previously
built map of the environment or a previous observation of the same
scene. Independently of the state representation, a sensor model is
used to simulate the collection of data. The verification step is then
used to check the consistency between the simulated data and the
real measurements for the identification of correct hypotheses or
changes in the scene.

During the training phase of the recognition module [4] an object
database is built using object modeling approach described in [38].
In addition to cues (e.g. visual features, color histograms, etc.)
needed for the recognition, the database contains 3D object models
as aggregated colored pointclouds Po (Fig. 6). This representation is
used in the reprojection test during the hypotheses verification step
and during attention and anticipation stages as will be described in
the following section.

1) Projection: The set of colored points Po can be transformed to
the current sensor frame Fs using the computed hypothesis about its

Fig. 6. Two example object representations stored in the database.
Pointclouds of a parcel and a beer barrel are shown on the left and right
respectively.

3D pose Ts
o . Using the camera matrix, these points can be projected

onto the image plane. We use the depth buffer for projecting only
those parts of the object which are visible from the position of
the sensor. Thus for each object, a virtual RGBD image Ms

o is
generated as follows. A 3D colored point in Po is denoted as the
tuple τo . It can be transformed to frame Fs by

τs , 〈 Ts
o τo

p, τ
o

c〉, where (1a)

τo
c and τo

p are respectively the color and point components of τo .
All the colored points in the object model, which after the above
transform project to the same pixel coordinates ms , can be denoted
as

P
s ( ms ) ,

{
τs | ms ' C τs p

}
, (1b)

where C is 3x3 camera intrinsic matrix of the sensor. Then the
virtual RGBD scan of the object model from the sensor frame can
be constructed pixelwise as,

Ms
o( ms ) = argmin

τs ∈ Ps ( ms )

∥∥∥ τs p

∥∥∥ (1c)

2) Verification: Let the mask Mo , { ms | ∃ τo ∈ P
o : ms '

C Ts
o τo

p} be the set of discrete image coordinates obtained by
projecting the object model Po.

For each pixel m in the mask Mo of the projected model
consistency is checked using the indicator functions 1d{·} and 1c{·}.
The depth similarity at pixel m is evaluated by comparing the range
values at the same pixel in the simulated and the real RGBD images:

1d(m, τ) ,
{

1,
∣∣∣‖ Ms (m)p‖ − ‖τp‖

∣∣∣ < εd

0, else.
(2)

In the above definition, Ms is the actual current RGBD image from
the sensor as opposed to Ms

o which is a virtual RGBD image, also
in the same sensor frame. Color consistency is checked using a
small window Bw of size 2w + 1 around the pixel m in the real
range image:

Bw(m) , {b | |mu − bu| ≤ w ∧ |mv − bv| ≤ w} ,

1c(m, τ) ,
{

1, If ∃b ∈ Bw(m), such that,
∥∥∥ Ms (b)c − τc

∥∥∥
c
< εc

0, else,
(3)

where, ‖ · ‖c is a color similarity metric, and mu,mv are (u, v)
coordinates of pixel m. We have used CIE L*A*B* space where
the perceptual difference between colors can be approximated by
the Euclidean distance between the color vectors.

As it is shown in Fig. 3 and will be discussed in the follow-
ing section, one of the first stages in our perception cycle is a
segmentation step which aims to over-segment the scene. Let us



denote S = {S1,S2, . . .Sn} to be the set of patches obtained during
the segmentation. Using the definitions from above, the following
quantities are defined to determine the consistency between real and
modeled data:

sd ,

∑
m∈Mo 1d{m, Ms

o(m)}
|Mo|

(4a)

sc ,

∑
m∈Mo 1c{m, Ms

o(m)}
|Mo|

(4b)

f (S) ,
∑

m∈Mo∩S

1d{m, Ms
o(m)} ∧ 1c{m, Ms

o(m)} (4c)

S? , argmax
S∈S

f (S), (4d)

so ,
f (S?)
|S?|

. (4e)

The quantities introduced in equations (4a) and (4b) respectively
are distance and color consistency measures.

As already mentioned, the segments S ∈ S are assumed to be
sub-segments of the objects, i.e., we assume over-segmentation. If
the hypothesis about the object’s location is correct then there must
exist a segment S? with a high consistency in the overlap between
reprojected model and the segments in the real image {S ∈ S |
M ∩ S , ∅}. This requirement is expressed in equation (4e), where
function f (·) measures overlap consistency by comparing colors
and ranges between simulated and real data. Using this function
we can calculate the last quantity so needed for the consistency
test. It measures the coverage rate of the segment with the highest
consistent overlap.

Based on definitions (4a), (4b) and (4e) the final consistency test
is done using the following inequality:

(wc · sc + (1 − wc) · sd) · so ≥ θc, (5)

where scalar 0 ≤ wc ≤ 1 is the weight factor for the color consis-
tency measure and the threshold 0 ≤ θc ≤ 1 is the lowest allowed
total consistency for the hypothesis to be considered correct. Thus,
if the inequality (5) holds, then the object is considered to be in the
scene at location Ts

o . Segments with consistencies f (S)/|S| above
a specified threshold are then used to construct the mask of the
detected object.

IV. ATTENTION AND ANTICIPATION FRAMEWORK

As mentioned earlier, the goal of using anticipation and attention
here is to achieve faster processing without sacrificing robustness.
Through the use of anticipation, the system keeps track of the
objects that have been removed or moved – either deliberatively
through manipulation or unintentionally through unexpected dy-
namics in the scene, e.g., as side-effects of the manipulation. This
can be checked in a fast top-down process through reprojection tests
(Fig. 4). The locations of perturbed or removed objects form the
regions of interest for the next perception cycle (Fig. 5).

The attention and anticipation framework was embedded in a
perception pipeline described in [4], [5] and it can be explained
with the help of Fig. 7.
Anticipation/Attention: This module takes as its input: 1) a set of

object hypotheses H[k−1] from the previous scene observation
time-instant k − 1; 2) the previous segmentation of the scene
S[k−1]; 3) a new RGBD image M[k]. It uses the reprojection
test described in Sec. III for finding out the changes in the
scene. This consists of two steps:
• Projecting the previous RGBD image M[k − 1] and seg-

mentation S[k − 1] resolved in sensor frame Fs[k−1] into
the frame Fs[k] of M[k] using (1). The segmentation

Anticipation

M[k]

Segmentation

Segmentation
Merging

Object
Recognition

Module

Fuser

Object
Hypotheses

Tracking

MA[k]

SA[k]

S [k]

H+[k]

H[k]

H[k − 1]

S [k − 1]

H−[k]

Mc[k]Mc[k]

Fig. 7. The modified recognition pipeline with the anticipation module.
Refer to Appendix for an explanation on the notation.

is projected by projecting corresponding pointclouds of
segments S ∈ S[k − 1]. If, after unloading an object, the
sensor always returns to an observation pose for taking
the next scan, then the observation frames for k and k − 1
are identical (i.e. Fs[k−1] and Fs[k] are the same) and the
projection is trivial.

• Next, equations (4) are applied, with Ms
o replaced by

M[k−1] and the projected segments S ∈ S[k−1]. Segments
with high value of consistencies f (S)/|S| are assumed to
have stayed unchanged and are used to find a consistent
maskMc[k]. Those with low values of consistency are used
to find the attention-mask MA[k], where attention is now
focused for further processing.

Each of the hypotheses from H[k−1] are also projected into the
current frame. By finding the projected mask intersection of the
recognized objects from H[k − 1] with Mc[k], it is possible to
determine the hypotheses set H−[k] of objects which have re-
mained static in the scene and do not need to be re-recognized
– the anticipation module, hence, forwards them directly to
a fuser component. The fuser is responsible for combining
object hypotheses coming from different recognition modules
and ensures that more confident hypotheses are taken in case of
overlap or contradiction. The forwarded hypotheses are treated
as hypotheses coming from a different recognition module.
In most of the cases these hypotheses don’t overlap with the
hypotheses detected in the attention regions and hence they are
simply concatenated. Let us denote all segments from S[k−1]
which belong to the objects in the set H[k − 1] − H−[k] as
∆M. Then, for added robustness, the attention mask MA[k] is
extended as MA[k]← MA[k] ∪ ∆M.

Segmentation: The RGBD raster of the attention region MA[k]
is divided into contiguous clusters, i.e. segments or patches,
which are homogeneous with respect to certain geometric
and/or color-based criteria. In this work, the segmentation was
done using the Mean-Shift [39] algorithm extended to oper-
ate in RGBD space. The segmenter basically over-segments
the scene and the resultant atomic-patches form the basis
for downstream perception pipeline components. An example



Fig. 8. Example segmentation of a full scene. Parcels and the beer barrels
are neatly stacked, making the segmentation difficult.

segmentation of a full scene is shown in Fig. 8.
Segmentation Merging: The masked portion MA[k] in M[k] is

now reprocessed by the segmentation module – this makes
the process efficient, since the segmentation needs to be re-
done only on the areas of M[k] which changed. The resulting
partial segmentation SA[k] is now merged with the unaltered
segmentation corresponding to Mc[k] by the segmentation-
merging module to produce a complete segmentation S[k].
This and MA[k] are used by the OR module to do an in-
cremental recognition of possible new objects to produce an
incremental hypotheses set H+[k]. The latter is then fused with
H−[k] to produce a full set H[k] which is sent to the hypothesis
tracker.

Hypothesis Tracking: This is currently a simple module which
caches sets of hypotheses according to the cycle-time k and
can be queried for past sets H[k − n].

V. PERFORMANCE IMROVEMENTS DUE TO ANTICIPATION
AND ATTENTION

To evaluate the performance of anticipation and attention, we use
the scene depicted in the Fig. 9(a). The paper is also accompanied
by a video demonstrating several autonomous unloading cycles on
additional scenes. The video is also available on Jacobs Robotics
YouTube channel1. The scene presented here contains 12 textured
objects in total, with 9 being visible in the first unloading cycle.
The dynamics of the scene during the complete unloading period
is demonstrated in Fig. 9 and Fig. 10. Each row of subfigures
corresponds to an unloading cycle, with a color image taken from
the scene-observation pose being in the left. It is followed by the
patch consistency image, where a green-yellow-red color map is
used to indicate the different consistency levels. The green color is
used for highly consistent regions and red for inconsistent patches.
The yellow shade indicates the clarity of the classification decision
– it’s impact is high near the decision threshold and decreases with
the higher distance from the threshold. The next column is used for
the illustration of the object movement classification. Green areas
correspond to the masks of the objects which were not perturbed
during the previous unloading cycle, whereas the red color regions
represent the attention mask, i.e. the (re)moved or newly appeared
objects. Finally, the last column shows the segmentation of the
attention region.

1https://www.youtube.com/JacobsRobotics

(a) Cycle 1. No prior information is
available in the first cycle therefore the
full RGBD image has to be processed.

(b) Cycle 2

(c) Cycle 3

(d) Cycle 4

(e) Cycle 5

(f) Cycle 6

Fig. 9. Anticipation and attention visualization during the first 6 cycles of
the unloading.

As can be seen in the third column of Fig. 9 and Fig. 10, the
anticipation-attention algorithm correctly identified all the changes
in the scenes with the only false positives in cycle 6 and 10. The
parameters (e.g. θc from inequality (5)) are tuned conservatively
in order to be sensitive to even the slightest changes in the scene.
Therefore false positives (regions classified incorrectly as changed)
are expected from time to time. This only slightly reduces efficiency,
but ensures robustness, which is of high importance to industrial
applications. Table I summarizes the performance of the anticipation
during the unloading of the container in terms of the ability to
classify correctly whether recognized objects were perturbed. In
this experiment only one object was falsely classified as perturbed
(cycle 6) due to the aforementioned reasons.

Table II and Table III provide quantitative comparison of the
recognition pipeline running with anticipation-attention enabled and
disabled. In the case of anticipation-attention being enabled, the
processing of the full RGBD scan is done only in the first cycle. The
subsequent scans are processed only in the attention regions, thus
leading to a drastic drop in the computation time. For the scenario
used in this work, the overall average runtime has decreased by

https://www.youtube.com/JacobsRobotics


(a) Cycle 7

(b) Cycle 8

(c) Cycle 9

(d) Cycle 10

(e) Cycle 11

(f) Cycle 12

Fig. 10. Anticipation and attention visualization during the last 6 cycles
of the unloading

#Cases Correctly Percentage
Classified

manipulated/perturbed 12 12 100 %
unperturbed 44 43 98 %

TABLE I
Accuracy of the classification of recognized objects

65%. The time gains for the segmentation and the recognition
were 91% and 47% respectively as can be computed from the
corresponding columns of Table II. Thus by spending a mere 5% of
the perception time on anticipation-attention we got an overall boost
in performance of 65%. The reprojection test, which is a major part
of the anticipation component, spent on average 170 ms. per object.
This can be considerably reduced by parallel computing, since the
operations involved are very simple and mostly independent.

Decrease in the computation time does not reduce the accuracy of
the recognition as can be inferred from Table III. Both cases had
almost the same precision, however recognition with anticipation
and attention enabled had a slightly better recall, which can be
expected, since it performs a more concentrated search of the
objects, thus causing less false negatives.

Anticipation Average Runtime, s

Anticipation Segmentation Recognition Overall

X 3.08 2.50 15.72 21.31
× - 27.96 32.96 60.92

TABLE II
The effect of anticipation and attention on perception runtime. First row
contains average runtimes when anticipation-attention was enabled, the

second - when it was disabled

Anticipation Recognition

TP FP FN Precision Recall

X 54 3 2 0.95 0.96
× 52 2 4 0.96 0.93

TABLE III
The effect of anticipation and attention on recognition performance. TP

stands for true-positives, FN for false negatives, etc.

VI. CONCLUSIONS

We presented an extension to a RGBD robot perception system
to increase processing speed while maintaining robustness. We
introduced a simple but efficient form of anticipation that uses
top down processes in form of reprojection tests to check whether
the expected changes of the scene due to the manipulation of
an object have taken place or whether there are any unexpected
dynamics due to unintended side-effects. Furthermore, we use
attention for further speed up by directing the bottom up processing
to regions of interests where expected or unexpected changes in
the scene have taken place. The method is tested on real world
data from an advanced demonstration set-up, namely a challenging
industrial application scenario in form of container unloading, but
it is applicable to advanced perception and manipulation tasks in
general.

Appendix

TABLE IV
Notations

pi ∈ R3 Position vector of a spatial point resolved in the
reference frame Fi.

Mi An RGBD image taken from camera-frame Fi.
mi ∈ R2 Image pixel coordinates of a point in an image taken

from the camera-frame Fi.
mi ∈ R3 The homogeneous coordinates for mi .

M A mask consisting of a set of pixels mi .
MA An attention mask consisting of a set of pixels repre-

senting the attention region.
S A Segment consisting of a set of homogeneous and

connected pixels mi .
S A segmentation consisting of a set of segments -

{S1,S2, . . .Sn}.
SA A segmentation of the attention region.
C The camera intrinsic matrix.
P A colored pointcloud - a set of 3D points with color.
H A list of detected objects together with their descrip-

tions (IDs, labels), confidences, masks and locations.
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