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Learning Robot Manipulation Tasks with
Task-Parameterized Semi-Tied
Hidden Semi-Markov Model

Ajay Kumar Tanwani1,2, Sylvain Calinon1

Abstract—In this paper, we investigate the semi-tied Gaussian
mixture models for robust learning and adaptation of robot
manipulation tasks. We make use of the spatial and temporal
correlation in the data by tying the covariance matrices of the
mixture model with common synergistic directions/basis vectors,
instead of estimating full covariance matrices for each cluster in
the mixture. This allows the reuse of the discovered synergies in
different parts of the task having similar coordination patterns.
We extend the approach to task-parameterized and hidden
semi-Markov models for autonomous adaptation to changing
environmental situations. The planned movement sequence from
the model is smoothly followed with a finite horizon linear
quadratic tracking controller. Experiments to encode whole body
motion data in simulation, followed by valve opening and pick-
and-place via obstacle avoidance tasks with the Baxter robot,
show improvement over standard Gaussian mixture models with
much less parameters and better generalization ability.

Index Terms—Learning and Adaptive Systems, Dexterous
Manipulation, Probability and Statistical Methods, Telerobotics
and Teleoperation

I. INTRODUCTION

PROBABILISTIC clustering models, such as Gaussian
mixture model (GMM), are widely used to encode local

trends in the data for classification or regression. For the set
of T observations {ξt}Tt=1 with ξt ∈ RD, the probability
density function P of GMM with K mixture components is
represented as

P(ξt|θ) =

K∑
i=1

πi N (ξt|µi,Σi), (1)

where N (µi,Σi) is the multivariate Gaussian distribution
with prior πi, mean µi, and covariance matrix Σi. θ =
{πi,µi,Σi}Ki=1 are the set of parameters to be estimated in
the density function.

Note that the number of parameters in the covariance matrix
Σi grows quadratically with the dimension of datapoints D.
With the burgeoning of high-dimensional sensory data and
multimodal interfaces for skill acquisition in robotics, an open
challenge is to compactly represent the high-dimensional data
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Fig. 1: Baxter robot learns to open/close the valve semi-
autonomously via teleoperation.

with fewer parameters, albeit having effective generalization
in similar unseen contexts.

Subspace clustering methods address this challenge by using
a parsimonious model to reduce the number of parameters
[1]. One way to reduce the number of parameters would
be to constrain the covariance structure to a diagonal or
spherical/isotropic matrix, thereby, restricting the number of
parameters to grow linearly or up to a constant at the cost
of treating each dimension separately. Such decoupling, how-
ever, cannot encode the important motor control principles of
coordination, synergies and action-perception couplings [2].

A. Proposed Approach

In this paper, we seek out a latent feature space in the high-
dimensional data to reduce the number of model parameters
that can be robustly estimated. We exploit a technique called
the semi-tied Gaussian mixture model, that associates or ties
the covariance matrices of mixture model with a common
latent space [3]. The latent space decorrelates the data and
the mixture components map the data onto the corresponding
subspaces to cope with perturbations. The task-parameterized
version of the model adapts the model parameters to new
environmental situations in a probabilistic manner. For reactive
autonomous behaviour, we encapsulate the spatial and state
duration information in the data with a hidden semi-Markov
model (HSMM) [4]. Learning of the model parameters is
performed with expectation-maximization (EM) [5], and the
generated movement sequence from the model is tracked with
a finite-horizon linear quadratic tracking (LQT) controller.
The proposed framework combines subspace clustering, task
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adaptability and optimal control for learning manipulation
tasks in robotics.

B. Related Work

Most of the work on clustering models has focused on
global dimensionality reduction methods as a pre-processing
step. Notable examples include principal component analysis,
factor analysis and linear discriminant analysis. Subspace clus-
tering models, in contrast, learn multiple subspaces to encode
the data according to their local trend, i.e., they perform
segmentation and dimensionality reduction simultaneously. A
broad range of these models encompasses sparse subspace
clustering [6], DP-space clustering [7], parsimonious models
[8], mixture of factor analyzers (MFA) [9] or mixture of
probabilistic principal component analyzers (MPPCA) [10].
For example, MFA performs subspace clustering by assuming
the structure of covariance matrix of the form

Σi = ΛiΛ
>
i + Ψi, (2)

where Λi ∈ RD×d is the factor loadings matrix with d<D for
parsimonious representation of the data, and Ψi is the diagonal
noise matrix. Coordinated MFA has found its application in
robotics in tracking 3D human movement from motion capture
data [11], and more recently for learning trajectories in robot
programming by demonstration framework [12].

Note that each covariance matrix of the mixture component
has its own subspace spanned by the basis vectors of Σi. As
the number of components increase to encode more complex
skills, an increasing large number of potentially redundant
parameters are used to fit the data. Consequently, there is a
need to share the basis vectors across the mixture compo-
nents. The concept was first exploited in speech processing
where the covariance matrices in output state sequence of a
Hidden Markov Model (HMM) were tied to a common linear
transform [3]. Parameter tying, for example, has been used
to robustly estimate the density parameters with thousands of
states in a HMM for building phone models [13].

To the best of our knowledge, the concept of tying covari-
ance matrices in mixture models to encode manipulation skills
in robotics has not been used. We extend the method here to a
task-parameterized model [14] and encode the state duration
and transition with a hidden semi-Markov model to enable
the handling of previously unseen situations in an autonomous
manner.

C. Application Scenario

We apply the proposed approach to teleoperation with the
Baxter robot where the robot is required to execute manipula-
tion tasks semi-autonomously in the presence of communica-
tion latencies (see Fig. 1 for the teleoperation mock-up). The
operator controls/teleoperates the right arm with a simulated
delay using the left arm by taking feedback from the camera
mounted on the end-effector of the right arm. In case of com-
munication disruptions, the robot recognises the current state
of the task being performed by the teleoperator and reproduces
the movement on the remote side autonomously until further
communication is established. This form of teleoperation is

used to acquire manipulation skills within the DexROV project
(dexterous undersea inspection and maintenance in presence of
communication latencies) [15]. Here, we perform experiments
to learn the challenging tasks of opening/closing a valve and
pick-place an object via obstacle avoidance with the Baxter
robot. Our results show that the proposed model efficiently
learns the key movement directions to construct the latent
space that are exploited to encode the task with a fewer
number of model parameters, while subsequently generalizing
to unseen configurations of the task.

II. SEMI-TIED GAUSSIAN MIXTURE MODEL

When the covariance matrices of the mixture model share
the same set of parameters for the latent feature space, we
call the model a semi-tied Gaussian mixture model. The main
idea behind semi-tied GMMs is to decompose the covariance
matrix Σi into two terms: a common latent feature matrixH ∈
RD×D and a component-specific diagonal matrix Σ

(diag)
i ∈

RD×D, i.e.,
Σi = HΣ

(diag)
i H>. (3)

The latent feature matrix encodes the locally important
synergistic directions represented by D non-orthogonal basis
vectors that are shared across all the mixture components,
while the diagonal matrix selects the appropriate subspace of
each mixture component as convex combination of a subset
of the basis vectors of H . Depending upon the sparsity of the
convex combination, there are multiple subspaces to choose.
In other words, we search for a global linear transformation
of the data such that the transformed data can be modelled by
a mixture of diagonal covariance matrices only.1

In high-dimensional spaces, Gaussian mixture components
with full covariance matrices tend to over-fit the training data
when the data is noisy and/or the number of datapoints is
insufficient. By tying the covariance matrices, the mixture
components are forced to align along a set of common
coordination patterns. This is also in line with biological motor
control where the central nervous system (CNS) is believed to
generate complex movements by temporal modulation of pos-
tural synergies [16]. The implementation of postural synergies
corresponds here to the basis vectors of H , while the diagonal
matrix of each mixture component Σ

(diag)
i modulates the basis

vectors in time for efficient encoding of complex tasks.

A. Conceptual Example

Consider multiple demonstrations of a 3-dimensional Z-
shaped movement as shown in Fig. 2. Encoding with semi-tied
GMM reveals the locally important basis vectors comprising
the latent feature space H . In contrast, PCA here would
yield orthogonal basis vectors along the directions of largest
variance globally. Note that the basis vectors are not required
to be orthogonal in the semi-tied GMM. It can be seen in Fig.
2 that the basis vector in red is shared across the first and

1Note that the eigen decomposition of Σi = U iΣ
(diag)
i U>

i contains D
basis vectors of Σi in U i. In comparison, semi-tied mixture model gives
D globally representative basis vectors that are shared across all the mixture
components.
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Fig. 2: (left) Semi-tied mixture model encoding of Z-shaped
data with 3 components and basis vectors shown at the origin,
(right) pairwise correlation among the mixture components of
semi-tied GMM (see section II-D for details).

the third mixture component, while the basis vector in green
is shared across the first and the second mixture component.
The basis vector in blue is tied only to the second mixture
component. This yields high correlation between the first and
the third mixture component, and low correlation of the second
Gaussian component with other mixture components (see right
of Fig. 2).

B. Maximum Likelihood Parameter Estimation

We are interested in maximum likelihood
estimates of the parameters of semi-tied GMM,
θ = {{πi,µi,Σ

(diag)
i }Ki=1,H}. Given the initial set of

parameters θ̂, substituting the expression for Σi from Eq. (3)
in the auxiliary function [5] yields,

Q(θ, θ̂) ≈ 1

2

T∑
t=1

K∑
i=1

hθ̂t,i

(
log
(
π2
i − |Σi|

)
− ξi

>

t Σ−1i ξ
i
t

)
,

≈ 1

2

T∑
t=1

K∑
i=1

hθ̂t,i

(
2 log(πi)− log

(
|Σ(diag)

i |
|B|2

)
−

ξi
>

t B
>Σ

(diag)−1
i Bξit

)
,

(4)

where B = H−1, ξit = ξt − µi, and hθ̂t,i = p(i|ξt, θ̂) is
the probability of data point ξt to belong to i-th Gaussian
component at time t. Setting ∂Q(θ,θ̂)

∂B and ∂Q(θ,θ̂)

∂Σ
(diag)
i

equal to

0, and solving for B and Σ
(diag)
i respectively results in an

expectation-maximization procedure to compute the maximum
likelihood estimate of parameters (see [17] for details). Fol-
lowing this, we get a row-by-row optimisation of B, with bd
(d-th row of B) related to all other rows by the cofactor of B

bd = cdG
−1
d

√√√√∑T
t=1

∑K
i=1 h

θ̂
t,i

cdG
−1
d c

>
d

, (5)

where cd is the d-th row of cofactors of B with C = cof(B)
recomputed after each update of bd

C = (B>)
−1|B|, (6)

Gd =

K∑
i=1

1

Σ
(diag)
i,d

Si

T∑
t=1

hθ̂t,i, (7)

where Σ
(diag)
i,d is the d-th diagonal element of the i-th Gaussian,

and Si is the full sample covariance matrix given by

Si =

∑T
t=1 h

θ̂
t,i(ξ

i
t)(ξ

i
t)

>∑T
t=1 h

θ̂
t,i

. (8)

The corresponding maximum likelihood estimate of Σ
(diag)
i

is computed as

Σ
(diag)
i = diag (BSiB

>) . (9)

Note the variational nature of optimisation where the current
estimate of Σ

(diag)
i is dependent on B and vice versa. Both

B and Σ
(diag)
i are iteratively improved in each EM step and

the likelihood is guaranteed to increase at each step.

C. Generalized Formulation

The mixture components of a semi-tied GMM tend to
align themselves towards the basis vectors of H . To analyze
the impact of this alignment on the encoding of movement
synergies, we introduce a tying factor α ∈ [0, 1] that controls
the degree of tying of the full covariance matrices with the
semi-tied covariance matrices, i.e.,

Σi = αHΣ
(diag)
i H> + (1− α)Si, (10)

where α = 1 gives a semi-tied GMM, α = 0 leads to a stan-
dard GMM, and (0 < α < 1) yields a family of models with
intermediate tying of the basis vectors. The overall algorithm is
shown in Alg. 1. Investigation of other promising approaches
to study the effect of number of basis vectors including
extended maximum likelihood linear transform (EMLLT) [18],
multiple linear transforms [19], or DP-space [7] is subject to
future work.

D. Analysis of Semi-Tied Gaussian Mixture Model

1) Number of Parameters Np: The number of parameters
for K covariance matrices in semi-tied GMM is smaller than
the number of parameters for full covariance matrices in GMM
(D2+KD compared to KD(D+1)

2 of GMM respectively). The
decrease in number of parameters is accompanied with addi-
tional computational cost of finding B and Σ

(diag)
i in semi-

tied GMM. Compared to semi-tied GMM, standard GMM only
requires the estimate of Si in Eq. (8) for the covariance matrix
update in each M step. More importantly, semi-tied GMM
reveals the latent structure in the data and can be exploited to
deal with noisy/insufficient data.
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Algorithm 1 Semi-Tied Gaussian mixture model

Input: {{ξt}Tt=1,K, α}
procedure EM Semi-Tied Gaussian Mixture Model

1: Initialize the parameters: {{πi,µi,Σi}Ki=1,B}
2: repeat
3: hθ̂t,i := πi N (ξt|µi,Σi)∑K

k=1 πk N (ξt|µk,Σk)

4: πi :=
∑T
t=1 h

θ̂
t,i

T , µi :=
∑T
t=1 h

θ̂
t,iξt∑T

t=1 h
θ̂
t,i

5: Compute Si using Eq. (8)
6: repeat
7: Compute Σ

(diag)
i using Eq. (9)

8: for d := 1 to D do
9: Compute C using Eq. (6)

10: Compute Gd using Eq. (7)
11: Compute bd using Eq. (5)
12: end for
13: until B converges
14: H := B−1, compute Σi using Eq. (10)
15: until L(θ|ξ) :=

∑T
t=1 log

(∑K
i=1 πi N (ξt|µi,Σi)

)
con-

verges with θ ≈ θ∗
16: return θ∗ := {π∗i ,µ∗i ,Σ

∗
i }Ki=1

2) Correlation of Mixture Components: To analyse the
encoding of semi-tied GMMs, we define M c ∈ RK×K as the
correlation matrix that gives pairwise correlation coefficient
between each pair of covariance matrices in the mixture model,
i.e.,

M c = corr
(
vec(Σ1) vec(Σ2) · · · vec(ΣK)

)
, (11)

where vec(Σi) above corresponds to the elements of Σi

in vector form, and mc(i, j) defines the correlation between
the corresponding pair of mixture components. The metric is
based on the observation that correlation among the mixture
components is higher if they share the same subspace as in
semi-tied GMM.

III. TASK-PARAMETERIZED SEMI-TIED GMM

With increasing functional and behavioural expectations of
robots, it has become imperative to encode manipulation tasks
such that the robots are able to execute them in previously
unseen contexts. Task-parameterized models provide a proba-
bilistic formulation to deal with different real world situations
by adapting the model parameters, instead of hard coding the
solution for each new situation or handling it in an ad hoc
manner [20], [21].

Task-parameterized GMMs in [14], [22], [23] can handle
new environmental situations by defining external frames of
reference. For example, a frame can be attached to an object
whose position and orientation may change during the task.
When a different situation occurs (position/orientation of the
object changes), changes in the task parameters or reference
frames are used to modulate the model parameters in order to
adapt the robot movement to the new situation.

We represent the task parameters with P coordinate sys-
tems, defined by the frames {Aj , bj}Pj=1, where Aj denotes
the orientation of the frame as a rotation matrix and bj

represents the origin of the frame.2 The observations ξt are
observed from different frames of reference forming a third
order tensor dataset {ξ(j)t }

T,P
t,j=1 with ξ(j)t = A−1j (ξt − bj).

The parameters of the task-parameterized GMM are defined
by θp = {πi, {µ(j)

i ,Σ
(j)
i }Pj=1}Ki=1, where µ(j)

i and Σ
(j)
i define

the mean and covariance matrix of i-th mixture component
in frame P . The probability of data point ξt to belong to
the i-th Gaussian component at time t (E-step) in the task-
parameterized formulation is given by

h
θ̂p
t,i =

πi
P∏
j=1

N (ξ
(j)
t | µ

(j)
i ,Σ

(j)
i )

∑K
k=1 πk

P∏
j=1

N (ξ
(j)
t | µ

(j)
k ,Σ

(j)
k )

, (12)

where
P∏
j=1

N (ξ
(j)
t | µ

(j)
i ,Σ

(j)
i ) represents the product of the

probabilities of the datapoint observed in P frames to be-
long to i-th Gaussian in the corresponding frame. Here, we
introduce the idea of tying the mixture components in task-
parameterized GMM, thereby, tying the i-th covariance matrix
in the j-th frame with latent feature space H(j) and diagonal
matrix Σ

(j)(diag)
i , i.e., Σ

(j)
i = αH(j)Σ

(j)(diag)
i H(j)> + (1 −

α)S
(j)
i . Maximum likelihood estimates of the parameters

remain the same as described in Alg. 1 except the computation
is repeated with respect to P different frames and the E-step
h
θ̂p
t,i is evaluated using Eq. (12). Similar to semi-tied GMM,

increasing α from 0 to 1 increases the effect of tying the
mixture components in the task-parameterized formulation.

After the training phase, the task-parameterized semi-tied
GMM parameters can be adapted to new environmental sit-
uations. For a new unseen situation represented by candidate
frames {Ãj , b̃j}Pj=1, the new model parameters {µ̃i, Σ̃i} for
the i-th mixture component correspond to the product of the
linearly transformed i-th Gaussian components in P frames

N (µ̃i, Σ̃i) ∝
P∏
j=1

N
(
Ãjµ

(j)
i + b̃j , ÃjΣ

(j)
i Ã

>

j

)
. (13)

Evaluating the product of Gaussian yields

Σ̃i =

 P∑
j=1

(
ÃjΣ

(j)
i Ã

>

j

)−1−1 ,
µ̃i = Σ̃i

P∑
j=1

(
ÃjΣ

(j)
i Ã

>

j

)−1 (
Ãjµ

(j)
i + b̃j

)
,

with Σ
(j)
i = αH(j)Σ

(j)(diag)
i H(j)> + (1− α)S

(j)
i . (14)

A. Extension to Hidden Semi-Markov Model (HSMM)

In many robotics applications, it is desirable to encode
tasks with an efficient representation capable of handling
movements with variable durations, recurring patterns, options
in the movement, or partial/unaligned demonstrations [24].
This allows the robot to resume the desired behaviour from

2Without loss of generality, the frames can be time-varying defined at time
t by {At,j , bt,j}Pj=1.
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situations such as manually stopping the robot in the course of
the task. Here, we encapsulate the spatio-temporal information
in the data with an explicit duration HSMM that replaces the
self-transition probabilities of staying in a state with an explicit
model of state duration [4].

In the resulting task-parameterized semi-tied HSMM
with K states, each state i output distribution is
described by a single Gaussian corresponding to the
product of P Gaussians. The parameters of task-
parameterized semi-tied HSMM are described by

θh =
{

Πi, {ai,m}Km=1, {µ
(j)
i ,Σ

(j)
i }Pj=1, µ

D
i ,Σ

D
i

}K
i=1

,
where Πi is the initial state probability, ai,m is the transition
probability of moving from state i to state m, {µ(j)

i ,Σ
(j)
i }Pj=1

is the parameter set for emission probability of state i, and
{µDi ,ΣDi } represents the mean and the standard deviation
of staying d consecutive time steps in state i estimated by
a Gaussian N (d|µDi ,ΣDi ). This duration model is used as a
replacement of the self-transition probabilities ai,i. Parameters{

Πi, {ai,m}Km=1, {µ
(j)
i ,Σ

(j)
i }Pj=1

}K
i=1

are estimated using an
EM algorithm [25] with tying in the i-th covariance matrix of
the j-th frame given by Eq. (14). Parameters {µDi ,ΣDi }Ki=1

are estimated empirically from the data after training.
Given the new model parameters {µ̃i, Σ̃i}Ki=1 estimated for

a given situation using Eq. (14), the probability of datapoint
ξt to be in state i at time t is recursively computed using the
forward variable αHSMM

t,i , P (st = i, ξ1 . . . ξt|θh) of explicit
duration HSMM [4], [26],

αHSMM
t,i =

K∑
j=1

min(dmax,t−1)∑
d=1

αHSMM
t−d,j aj,i N (d|µDi ,ΣDi )

t∏
s=t−d+1

N (ξs|µ̃i, Σ̃i), (15)

with initialization given by αHSMM
1,i = πiN (ξ1|µ̃i,Σ̃i)∑K

k=1 πkN (ξ1|µ̃k,Σ̃k)
. The

forward variable is used here to evaluate the current state of the
task ξ1 and subsequently plan the movement sequence for the
next T steps with t = 1 . . . T . Note that during reproduction,
we only use the transition matrix and the duration model to
plan the future evolution of the initial/current state ξ1 and omit
the influence of the spatial data, i.e., N (ξt|µ̃i, Σ̃i) = 1 for
t > 1. This is used to retrieve a step-wise reference trajectory
N (µ̂t, Σ̂t) from a given state sequence qt computed from the
forward variable, with

qt = arg max
i

αHSMM
t,i , µ̂t = µ̃qt , Σ̂t = Σ̃qt . (16)

B. Trajectory Reproduction with Linear Quadratic Tracking

Consider a double integrator system as an analogue of a
unit mass attached to the datapoint ξt. The desired step-wise
reference trajectory N (µ̂t, Σ̂t) can be smoothly tracked by
minimizing the cost function

ct(ξt,ut) =

T∑
t=1

(ξt − µ̂t)>Qt(ξt − µ̂t) + u>
tRtut, (17)

s.t. ξ̇t = Adξt +Bdut,

starting from the initial state ξ1. Let ξt = [xt
> ẋt

>]>, µ̂t =

[µ̂xt
>
µ̂ẋt

>
]> where x, ẋ represent the position and velocity of

the double integrator system. Setting Qt = Σ̂
−1
t � 0,Rt � 0,

the control input u∗t that minimizes the cost function is given
by

u∗t = −R−1t B
>
dP t(ξt − µ̂t) +R−1t B

>
ddt, (18)

= KP
t (µ̂xt − xt) +KV

t (µ̂ẋt − ẋt) +R−1t B
>
ddt,

where [KP
t ,K

V
t ] = R−1t B

>
dP t are the full stiffness and

damping matrices, R−1t B
>
ddt is the feedforward term, and

P t,dt are the solutions of the following differential equations

−Ṗ t = A>
dP t + PtAd − P tBdR

−1
t B

>
dP t +Qt, (19)

−ḋt = A>
ddt − P tBdR

−1
t B

>
ddt + P t

ˆ̇µt − P tAdµ̂t,

with terminal conditions set to P T = 0 and dT = 0. Note that
the gains can be precomputed before simulating the system
if the reference trajectory and/or the task parameters do not
change during the reproduction of the task. The resulting
trajectory ξ∗t smoothly tracks the step-wise reference trajectory
µ̂t and the gains KP

t ,K
V
t stabilize ξt along ξ∗t in accordance

with the precision required during the task.

IV. EXPERIMENTS, RESULTS AND DISCUSSION

In this section, we first evaluate the performance of semi-
tied GMM to encode a high-dimensional whole body move-
ment (chicken dance from the CMU motion capture database
[27]). Following this, we show how the proposed task learning
method enables the Baxter robot to open/close a valve and
pick-and-place an object by avoiding an obstacle from dif-
ferent environmental situations. Performance setting in all our
experiments is as follows: {πi,µi,Σi}Ki=1 are initialized using
k-means clustering algorithm, B = 0.1I,R = 9I , where I is
the identity matrix.

A. Whole Body Motion Capture Data - Chicken Dance

The dataset consists of two subjects performing the chicken
dance. The dance involves rapid and brisk whole body limb
movements with D = 94 corresponding to the recorded
timestamps (T ≈ 11 seconds) and the 3-dimensional position
of 31 joints for one subject, thereby, making it a challenging
problem for the algorithm.

Result of the regenerated dance movement sequence with
75 mixture components and 500 downsampled datapoints
is shown in Fig. 3. Plots on bottom right show a generic
trend where semi-tied GMM (α = 1) requires more mixture
components to model the training data in comparison to a
standard GMM (α = 0). Decreasing the tying factor in a semi-
tied GMM gradually pushes the solution towards a standard
GMM as seen with α = 0.6 and the resulting MSE curve. The
number of parameters, however, remain order of magnitudes
less for a semi-tied GMM (15, 886 only in comparison to
334, 875 for a standard GMM with 75 mixture components).
Pairwise correlation comparison in Fig. 4 reveals that the
correlation among the mixture components as defined in Eq.
11 increases with the semi-tied GMM in comparison to the
correlation observed with the standard GMM.
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Fig. 3: Chicken dance movement for the two subjects is shown in blue and red. Regenerated movement for the subject in
red is shown in green using Gaussian mixture regression. Two plots on bottom right show comparison of mean squared error
(MSE) and the number of parameters Np of covariance matrix in log 10 scale with increasing number of mixture components
K. Time is in seconds, α = 1 represents semi-tied GMM, whereas α = 0 corresponds to a standard GMM.
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Fig. 4: Pairwise correlation comparison among the mixture
components for whole body motion capture data: (left) training
with standard GMM, (right) training with semi-tied GMM.

B. Baxter Valve Opening

Valve opening task is a standard benchmark in robotics
because it can be applied to a wide range of environments
and applications. The goal is to bring the valve in an open
position from different initial configurations of the valve using
the torque-controlled Baxter robot in our teleoperation setup
shown in Fig. 1. Note that the task allows the reuse of
synergistic directions such as when reaching the valve and
when coming back to a neutral joint angle configuration (home
position).

The adaptive aspect of the task requires to ascertain where to
grasp the valve and where to stop turning it. Consequently, we
attach two frames, one with the observed initial configuration
of valve {A1, b1} and other with the desired end configuration
of the valve {A2, b2} (marked with a visual tag of 0 degree
around the valve). We record eight kinesthetic demonstrations
with the initial configuration of the valve corresponding to
{180, 135, 90, 45, 157.5, 112.5, 67.5, 22.5} degrees with the

Fig. 5: Baxter valve opening movement reproduction for
an unseen valve configuration: (left) encoding with task-
parameterized HSMM (α = 0), (right) encoding with task
parameterized semi-tied HSMM (α = 1). Note that the
mixture components are better aligned and scaled in task-
parameterized semi-tied HSMM.

horizontal in the successive demonstrations, n = 1 . . . 8. The
first 4 demonstrations are used for the training test, while
the remaining 4 are used for the test set. Each observation
comprises of the end-effector Cartesian position xpt ∈ R3,
quaternion orientation εot ∈ R4, linear velocity ẋpt ∈ R3 ,
and quaternion derivative (estimated from angular velocity)
ε̇ot ∈ R4 for a total of 14 dimensions per sample. Each demon-
stration is further downsampled to a total of 200 datapoints.
For notational convenience, we define ξt = [xt

> ẋt
>]> with

xt =
[
xpt

>
εot

>
]>

and ẋt =
[
ẋpt

>
ε̇ot

>]>, and represent the
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Fig. 6: Variance of the learned model along position and orientation variables in frame 1 (top) and frame 2 (bottom). Invariant
phase across all demonstrations (highlighted in blue) is observed for components 3 and 5 in frame 1 and frame 2 respectively.

Fig. 7: HSMM encoding of the baxter valve opening task: (left)
resulting left-right HSMM with duration model shown next to
each state (dmax = 100), (right) rescaled forward variable,
hHSMM
t,i =

αHSMM
t,i∑K

k=1 α
HSMM
t,k

, evolution with time.

frame as

A
(n)
j =


R

(n)
j 0 0 0

0 E(n)j 0 0

0 0 R
(n)
j 0

0 0 0 E(n)j

 , b(n)j =


p
(n)
j

0
0
0

 ,
(20)

where p(n)j ∈ R3,R
(n)
j ∈ R3×3, E(n)j ∈ R4×4 denote the

Cartesian position, the rotation matrix and the quaternion
matrix of the j-th frame in the n-th demonstration respectively.
A sketch of different frames in the demonstrations can be seen
in top zoomed portion of Fig. 5. Note that we do not consider
time as an explicit variable as the duration model in HSMM
encapsulates the timing information locally.

Results of regenerating the movements with 7 mixture
components are shown in Fig. 5. The number of Gaussians are
empirically selected in this experiment based on the important
phases in the task such as reaching, grasping, turning etc.
Alternatively, a Bayesian information criterion, or a non-
parametric approach based on Dirichlet processes can also be
used for model selection. For a given initial configuration of
the valve, the model parameters are adapted by evaluating

TABLE I: Performance analysis of tying factor α in task-
parameterized semi-tied HSMM with training MSE, testing
MSE, number of covariance matrix parameters using 7 mixture
components and 2 frames, and time required for training the
model in seconds.

α
Training Testing Number of Training

MSE MSE Parameters Time (s)
valve opening

0.0 0.0021 0.0146 1470 2.45
0.5 0.0038 0.0119 1470 5.40
1.0 0.0040 0.0119 588 9.78

pick-and-place via obstacle avoidance
0.0 0.0023 0.0138 1470 2.21
0.5 0.0028 0.0129 1470 4.73
1.0 0.0033 0.0127 588 10.21

the product of Gaussians for a new frame configuration.
The reference trajectory is then computed from the initial
position of the robot arm using the forward variable (see Fig.
7 for HSMM encoding) and tracked using LQT. The robot
arm moves from its initial configuration to align itself with
the first frame {A1, b1} to grasp the valve, and follows it
with the turning movement to align with the second frame
{A2, b2} before returning back to the home position. Table
I quantifies the encoding results with different values of α.
We can see that the task-parameterized semi-tied HSMM
(α = 1) drastically reduces the number of parameters and
yields better testing error than training error compared to task-
parameterized HSMM with α = 0. Fig. 6 shows that the task-
parameterized formulation exploits variability in the observed
demonstrations to statistically encode different phases of the
task. Here, reaching the valve and coming back to home
position have higher variability in the demonstrations, whereas
aligning with the frames for grasping/turning and stopping the
valve have no observed variations in their respective coordinate
systems. Consequently, the robot arm is able to reach the valve
from different initial configurations, grasp the valve and turn
it to the desired position.
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Fig. 8: (left) Baxter robot picks the glass plate with a suction
lever and places it on the cross after avoiding an obstacle of
varying height, (right) reproduction for test set demonstration
corresponding to maximum obstacle height.

C. Baxter Pick-and-Place via Obstacle Avoidance

The objective in this task is to place the object in a desired
target position by picking it from different initial positions
and orientations of the object, while adapting the movement to
avoid the obstacle (see Fig. 8 for setup with the Baxter robot).
We describe the task with two frames, one for the object initial
configuration with {A1, b1} as defined in Eq. (20) and other
for the obstacle {A2, b2} with A2 = I and b2 to specify the
centre of the obstacle. We collect 8 kinesthetic demonstrations
with different initial configurations of the object and the
obstacle successively displaced upwards as marked with the
visual tags in the figure. Alternate demonstrations {1, 3, 5, 7}
are used for the training set, while the rest are used for the
test set. During evaluation of the learned task-parameterized
semi-tied HSMM, we can see that the robot arm is able to
generalize effectively by following a similar pattern to the
recorded demonstrations in picking and placing the object
(see right of Fig. 8 for an example of reproduction requiring
extrapolation of the training data). Table I depicts a similar
trend to the valve opening task, thereby verifying the efficacy
of the proposed method for learning manipulation tasks.

V. CONCLUSION
In this paper, we have presented a technique to tie the

covariance matrices of a mixture model with a shared set of
basis vectors. The approach is based on the hypothesis that
similar coordination patterns occur at different phases in a
manipulation task. While feature extraction remains one of the
central problems in machine learning, semi-tied GMM yields
interesting features in the latent space that can be reused in
other parts of the skill. We have shown that the proposed task-
parameterized semi-tied HSMM encoding enables the robot to
autonomously deal with different situations in manipulation
tasks. This has enabled the Baxter robot to tackle valve
opening and pick-and-place via obstacle avoidance problems
from previously unseen configurations of the environment.
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