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Abstract— Human-robot collaboration seeks to have humans
and robots closely interacting in everyday situations. For some
tasks, physical contact between the user and the robot may
occur, originating significant challenges at safety, cognition,
perception and control levels, among others. This paper focuses
on robot motion adaptation to parameters of a collaborative
task, extraction of the desired robot behavior, and variable
impedance control for human-safe interaction. We propose to
teach a robot cooperative behaviors from demonstrations, which
are probabilistically encoded by a task-parametrized formula-
tion of a Gaussian mixture model. Such encoding is later used
for specifying both the desired state of the robot, and an optimal
feedback control law that exploits the variability in position,
velocity and force spaces observed during the demonstrations.
The whole framework allows the robot to modify its movements
as a function of parameters of the task, while showing different
impedance behaviors. Tests were successfully carried out in a
scenario where a 7 DOF backdrivable manipulator learns to
cooperate with a human to transport an object.

I. INTRODUCTION

The robots’ role in our daily life is becoming more

prominent as robots are getting safer, more user-friendly and

versatile. This allows robots to share and populate human

environments such as hospitals, houses, factories, etc. In

these places, the robot is aimed at assisting or collaborating

with people to facilitate, improve and/or speed up specific

tasks that usually are carried out by a group of humans

exclusively. In this context, some of the robot duties can

involve physical contact, for example, in hand-over tasks

[1], or when a robot cooperatively carries an object with a

human partner [2]. This physical interaction provokes a rich

exchange of haptic information, involves compliant robot

movements [3], and sometimes requires the robot to follow a

desired trajectory [4]. These aspects are not straightforward

to program, and so is the inclusion of all the possible

variations the robot might face. Additionally, the type of

jobs carried out by the robot may frequently vary. Therefore,

a robotic assistant is required to be easily and rapidly re-

programmed several times according to specific needs.

Programming by demonstration (PbD) [5], [6] emerges

as a promising alternative solution allowing the natural and

intuitive transfer of human knowledge about a task to a

collaborative robot. In this paper we exploit PbD in human-

robot collaboration (HRC) by tackling four problems: (i)
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Fig. 1: Illustration of a human-robot cooperative transporta-

tion task. Several bulky planks need to be carried to a specific

location. The height at which each plank is placed varies

as more planks are placed at the final position, which is a

parameter influencing parts of the collaborative task.

the encoding of human demonstrations that vary according

to parameters of the task (e.g., objects to grasp, location

of obstacles in the workspace, etc), (ii) the extraction of

the desired state of the robot during the reproduction of

the collaborative behavior, (iii) the estimation of different

compliance levels over time, and (iv) a safe interaction with

the human. Thus, our aim is to provide a PbD framework that

allows the robot to adapt both its impedance and desired state

according to the task constraints, while safely cooperating

with users.

Specifically, the proposed approach encodes the human

demonstrations with a task-parametrized formulation of the

Gaussian mixture model [7], that allows the robot to shape

its behavior or motion as function of parameters of the task.

The novelties are threefold. We first propose a principled

approach to handle robot states composed of position, ve-

locity and force, in human-robot collaborative tasks. Sec-

ondly, our approach exploits the statistical representation of

task constraints in multiple coordinate systems within an

optimal control strategy to automatically estimate Cartesian

impedance gains as full matrices of the controller governing

the cooperative robot behavior. These time-varying gain

matrices likewise allow the robot to automatically prioritize

to specific parts of the task, or to more precisely compensate

for errors of particular desired state variables. Thirdly, the

proposed optimal controller permits to minimize not only

the robot effort, but also the human intervention along the

task.

We successfully test our approach in a real-world scenario

where a 7 DOF robotic manipulator learns to perform a coop-

erative manipulation task requiring different constraints to be

satisfied, while behaving with different levels of compliance.



The rest of the paper is organized as follows: Section II

reviews works related to our problem, while Sections III, IV

and V respectively present the interaction model of the robot,

the learning framework, and the optimal estimation of the

controller parameters. The experimental setting and results

are introduced in Section VI. Finally, conclusions and future

routes of research are given in Section VII.

II. RELATED WORK

Recently, research on PbD for human-robot collaborative

scenarios has gained increased interest in the Robotics com-

munity. In this field, new challenges need to be solved,

such as dealing with novel types of information (e.g., hap-

tic perception, human gaze, etc.), role allocation, intention

prediction, among others. For instance, in [8] a probabilistic

framework based on Gaussian mixture models (GMM) and

Gaussian mixture regression (GMR) was proposed to respec-

tively encode and reproduce robot collaborative behaviors.

Demonstrations of leader/follower roles during a cooperative

lifting task were provided by teleoperation. GMM encapsu-

lated the robot motion and the sensed forces, while GMR

generated the reference inputs corresponding to a given

sensed force during reproduction. The same task was studied

by Gribovskaya et al. [9], who proposed a hybrid structure

based on PbD and adaptive control that drives the robot

using an adaptive impedance controller. First, a feed-forward

model of the task was learned from demonstrations encoded

by a GMM. Then, the impedance parameters were adapted as

function of the kinematic and force errors generated during

the execution of the task.

Medina et al. [10] introduced a cognitive system with seg-

mentation, encoding and clustering capabilities for demon-

strations of collaborative behavioral primitives. These were

represented by a primitive graph and a primitive tree using

hidden Markov models that were incrementally updated

during reproduction. One of the main differences with respect

to [8] is that the robot started its behavior as a follower, with

a role progressively becoming more proactive as it acquired

more knowledge about the task. In [11], dynamic movement

primitives (DMP) were used for driving the robot motion in

cooperative tasks. The DMP depended not only on a given

reference to follow, but also on an obstacle avoidance force

and an interaction term. The latter was learned so that the

interaction forces were minimized.

Later on, Ben Amor et al. [12] proposed a probabilistic

encoding of the DMP parameters that allowed for adaption

and correlation of the robot motion based on predictions of

the human intention from partial observations. Their formula-

tion used dynamic time warping for shaping the future robot

actions according to the partner actions. DMPs have also

been used in human-in-the-loop robot learning [13]. Such

approach considered an online learning strategy where the

human tutor taught a cyclic motion and different compliance

levels through teleoperation. The former was obtained with

motion capture systems, while the latter was computed from

electromyography signals.

PbD and risk-sensitive optimal control have also been

combined for designing robotic assistants [14]. The idea is to

predict the human motion and accordingly set the trajectory

reference of a risk-sensitive controller. Using this framework,

the robot minimizes the human contribution along the task

while slightly adapting to unexpected behaviors of the user.

These works were mainly focused on learning either the

robot’s role or an adaptive varying impedance or movement.

In contrast, we here present an approach that not only permits

to extract the position, velocity and force constraints of the

task from kinesthetic demonstrations, but also to shape the

robot motion as a function of task parameters, therefore ex-

tending our previous work [15] where only position feedback

was considered and the controller gains were manually set.

The proposed model is combined with an optimal controller

that exploits the variability observed in the demonstrations to

continuously adapt a feedback control law. In other words,

the robot compliance level is updated according to the preci-

sion that is required to track its desired state over time. Note

that our approach also differs from [14] in that we consider

the force perceptions as an additional task constraint, which

becomes relevant when specific force profiles are required

for manipulating particular objects, which consequently leads

us to a new optimal control formulation. In [14] the force

perceptions are instead considered as an independent noise

input to the system due to uncertain predictions of the model,

and moreover the robot was not able to adapt its behavior

according to varying task parameters.

III. INTERACTION MODEL

To formalize the problem, the joint space dynamics model

of the robot under interaction with the environment (e.g., the

human partner) is defined as

H(q)q̈ +C(q, q̇)q̇ + g(q) = τ + J(q)⊤f , (1)

where H(q), C(q, q̇) and g(q) are the inertia matrix, the

vector of centrifugal and Coriolis forces, and the gravity

components, respectively. The pose of the robot in joint space

is denoted by q, τ is the actuation torques vector, J(q) is

the Jacobian of the robot, and f is the vector of external

forces applied to the end-effector, that can be obtained by a

sensor on the robot’s tool. Also, let us define the joint space

controller τ as

τ = J(q)⊤Λ(q)u+ τ g, (2)

where u represents a desired control acceleration at the

robot’s end-effector, Λ(q) =
(
J(q)H(q)−1J(q)⊤

)−1
is the

Cartesian inertia matrix, and τ g the torque commands to

compensate for the effect of gravity.

During a collaborative task, constraints at position, veloc-

ity and force may arise. So, in order for the robot to fulfill

such constraints, we propose a controller u = um + uf ,

where um and uf respectively represent motion and force

control commands. These controllers compensate for motion

and force feedback errors, and are defined as

um = KP (x̄− x) +KV (¯̇x− ẋ) , (3)

uf = KF
(
f̄ − f

)
, (4)



where the matrices KP , KV and KF are full stiffness,

damping and force gain matrices, respectively. In addition,

x̄, ¯̇x and f̄ are the reference or desired Cartesian position,

velocity and sensed force, that can be obtained from human

demonstrations of the desired collaborative behavior (see

Section IV). From the definition of u, we can reorganize

the whole controller in a matrix notation as

u = −
[
KP KV KF

]





x̃
˜̇x

f̃



 , (5)

where x̃ = (x− x̄), ˜̇x = (ẋ− ¯̇x) and f̃ =
(
f − f̄

)
. Such

an expression shares similarities with the feedback term of

a linear quadratic regulator (LQR), where the controller is

expressed as a proportional gain multiplying the error of the

system state (in other words, a state-feedback controller, see

[16]).

IV. TASK LEARNING WITH TP-GMM

The robot collaborative behavior is learned from human

demonstrations, which are encoded with a task-parametrized

version of the Gaussian mixture model (TP-GMM) [7]. This

model allows us to consider task constraints in different

frames of reference (i.e., the parameters of the task), which

is particularly advantageous when the robot behavior is

conditioned by, for example, position of objects or users,

changes in the environment and changes of configurations

of another robot parts. Formally, the task parameters are

represented as P coordinate systems, defined at time step

t by {bt,j ,At,j}Pj=1, representing respectively the origin of

the observer and a set of basis vectors {e1, e2, . . .} forming

a transformation matrix A=[e1e2 · · · ].

A demonstration ξ ∈ R
D×T is observed from

these different frames, forming a third order tensor

dataset X ∈R
D×T×P , composed of P trajectory samples

X(j)∈R
D×T observed in P candidate frames, correspond-

ing to matrices composed of D-dimensional observations at

T time steps. The parameters of the proposed TP-GMM with

K components are defined by {πi, {µ
(j)
i ,Σ

(j)
i }Pj=1}

K
i=1 (πi

are the mixing coefficients, µ
(j)
i and Σ

(j)
i are the center

and covariance matrix of the i-th Gaussian component in

frame j).

Learning of the parameters is achieved with the con-

strained problem of maximizing the log-likelihood under

the constraints that the data in the different frames are

generated from the same source, resulting in an expectation-

maximization (EM) process to iteratively update the model

parameters until convergence [7]. The model parameters are

initialized with a k-means procedure redefined using a similar

process to that used for the modified EM algorithm. The

learned model can further be used to reproduce movements

in other situations (for new positions and orientations of

candidate frames). The model first retrieves at each time step

t a GMM by computing a product of linearly transformed

Gaussians

N (µt,i,Σt,i) ∝
P∏

j=1

N
(

At,jµ
(j)
i +bt,j , At,jΣ

(j)
i A⊤

t,j

)

,

(6)

Σt,i =
( P∑

j=1

(At,jΣ
(j)
i A⊤

t,j)
−1)−1

, (7)

µt,i = Σt,i

P∑

j=1

(At,jΣ
(j)
i A⊤

t,j)
−1(At,jµ

(j)
i +bt,j). (8)

With the temporary GMM representation computed in

Eq. (6), a reference movement or an average collaborative

behavior can be estimated as a regression problem [17]. We

define the superscripts I and O as the sets of dimensions

that span for input and output variables (that will be used as

exponents in vectors and matrices). At each iteration step t,

the datapoint ξt can be decomposed as two subvectors ξI

t and

ξO

t spanning for the input and output variables, respectively.

With this notation, a block decomposition of the datapoint

ξt, vectors µt,i and matrices Σt,i can be written as

ξt =

[
ξI

t

ξO

t

]

, µt,i =

[
µI

t,i

µO

t,i

]

, Σt,i =

[
Σ

I

t,i Σ
IO

t,i

Σ
OI

t,i Σ
O

t,i

]

. (9)

Given the temporary GMM that encodes the joint distri-

bution P(ξI

t , ξ
O

t ) ∼
∑K

i=1 πiN (µt,i,Σt,i) of the dataset ξ,

at each reproduction step t, P(ξO

t |ξ
I

t ) is computed as the

conditional distribution

P(ξO

t |ξ
I

t ) ∼
K∑

i=1

γi(ξ
I

t ) N
(

µ̂O

t,i(ξ
I

t ), Σ̂
O

t,i

)

,(10)

with µ̂O

t,i(ξ
I

t ) = µO

t,i +Σ
OI

t,i Σ
I

t,i
−1

(ξI

t − µI

t,i), (11)

Σ̂
O

t,i = Σ
O

t,i −Σ
OI

t,i Σ
I

t,i
−1

Σ
IO

t,i , (12)

and γi(ξ
I

t ) =
πiN (ξI

t | µ
I

t,i,Σ
I

t,i)
∑K

k πkN (ξI

t | µ
I

t,k,Σ
I

t,k)
. (13)

Note that (10) represents a multimodal distribution that

can be approximated by a single Gaussian distribution

N (µ̂O

t , Σ̂
O

t ) with parameters

µ̂O

t =
K∑

i=1

γiµ̂
O

t,i, (14)

Σ̂
O

t =

K∑

i=1

γi

[

Σ̂
O

t,i+µ̂O

t,i(µ̂
O

t,i)
⊤

]

−µ̂O

t (µ̂
O

t )
⊤

. (15)

Hence, we can obtain the reference state of the robot in

an online manner during the cooperative task by GMR. The

desired position x̄, velocity ¯̇x, and forces f̄ will be used

in (5), thus establishing the feedback control law from the

cooperative behavior previously demonstrated.

V. OPTIMAL CONTROLLER GAINS ESTIMATION

Once the reference state of the robot has been learned

for the collaborative task at hand, it is crucial to determine

how the robot will follow this reference state during repro-

duction. First, let us define the whole state of the robot



as ζ = [x⊤ ẋ⊤ f⊤ ]
⊤

, recalling that x, ẋ and f are the

Cartesian position, velocity and sensed force of the robot

end-effector. We also define the inputs to the system as the

vector ν = [u⊤ v⊤ ]
⊤

, where u is the control input expressed

as (5), and v represents an external input to the system. Note

that, unlike [7], [14], this additional input allows us not only

to establish a dynamic equation for the sensed forces f , but

also to include the influence of an external input v on the

system dynamics. In the HRC context, such an input can

represent the interaction of the human with the robot during

the cooperative task. Furthermore, let us assume that the

end-effector becomes equivalent to a unit mass after gravity

compensation, so the state space representation of the robot

in task space can be written as1

ζ̇ =

A
︷ ︸︸ ︷




0 I 0

0 0 I

0 0 0



 ζ +

B
︷ ︸︸ ︷




0 0

I 0

0 I



ν, (16)

namely d
dt
x = ẋ, d

dt
ẋ = u + f , and d

dt
f = v. Note

that the latter equation indicates that the variation of the

sensed forces depends on the external input v, in other

words, the physical interaction between the human and the

robot directly influences the variation of the robot’s force

perception. Lastly, we denote the column space of the input

matrix B = [B1 B2].
Once reference position, velocity and force profiles have

been obtained for the current time step, the controller gains

can be estimated with an optimal control strategy. Optimal

feedback controllers allow the robot to plan a feedback

control law tracking the desired state. Formally, the problem

is stated as finding the optimal input ν that minimizes the

cost function

Jt =

∞∑

n=t

(ζn − ζ̄t)
⊤Qt(ζn − ζ̄t) + ν⊤

nRt νn, (17)

where ζ̄t represents the reference or desired state obtained by

GMR, while the matrices Qt and Rt are weighting matrices

that determine the proportion in which the tracking errors

and control inputs affect the minimization problem. The

aforementioned problem is typically known as an infinite

horizon LQR [16]. We exploit (17) in two new manners.

First, we take advantage of the variability observed during

the demonstrations to adapt on-the-fly the error costs in (17).

This can also be interpreted as shaping the gain matrices

according to the precision required by the task across the

robot state variables. On the other hand, the minimization

of the second term of (17) implies that both the robot

control command u and the external input v are minimum,

and consequently minimizing the robot effort and human

intervention.

We define

Qt=
(

Σ̂
O

t

)−1

, Rt=

[
Ru

t 0

0 Rv
t

]

, (18)

1
A and B are matrices defining the dynamical system, not to be

confounded with the At,j and bt,j defining the coordinate systems in (6).

Demonstrations

Reproductions

Fig. 2: Experimental setting of the human-robot transporta-

tion task: (top) kinesthetic demonstrations, and (bottom)

reproduction phase.

using (15). In our experiment, Rt is defined as a diagonal

matrix. Nevertheless, it is worth highlighting that the struc-

ture of the matrix Rt permits to vary the relevance given

to the minimization of the robot control command and the

external human input through the submatrices Ru
t and Rv

t ,

respectively. Such features can be significantly exploited in

physical human-robot interaction, where the matrix Ru
t can

be shaped over time according to the safety level demanded

by the task. For instance, the higher the Ru
t values, the lower

the control forces applied by the robot, and therefore the

safer the interaction. This issue will be thoroughly explored

in future works.

Note that the cost function is updated at each time step t

to compute the next control command. This formulation is

better suited for HRC in weakly structured environments,

where the robot actions might be updated swiftly based

on the state and/or actions of the user, and the state of

the environment. In contrast to infinite horizon LQR, finite-

horizon requires the recursive computation of an ordinary

differential equation, and is thus better suited for planning

situations in which the candidate frames are not expected to

move. The minimization of (17) can be solved through the

algebraic Riccati equation, providing an optimal feedback

controller in the form of (5) with full stiffness, damping and

force gain matrices. Specifically, the LQR solution for our

problem is represented by

νt = R−1
t B⊤ [−St( ζt − ζ̄t )+dt] , (19)

where the robot controller is obtained as

ut = Ru−1

t B⊤

1

[
−St

(
ζt − ζ̄t

)
+ dt

]
, (20)

with St and dt as solutions of the equations

A⊤St+Qt+StA−StBR−1
t B⊤St = 0, (21)

−A⊤dt+StAζt+StBR−1
t B⊤dt−Stζ̇t = 0, (22)

and B1 belonging to the column space of B, as specified

previously. In the above, dt is the feedforward term, which
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Fig. 3: Encoding of the demonstrations in the different coordinate systems. The local models in the start and target frames

are respectively shown in the first and second rows (projected on the position subspace of the data). The gray lines depict

the end-effector trajectory (in meters) observed from the different frames. The ellipsoids represent the Gaussian components

of the model. Black dots depict the beginning of the demonstration.

can optionally be neglected for low dynamic movements.

The solution for ut provides optimal feedback gains KP ,

KV and KF , which allow the robot to optimally track its

desired state during the cooperative task in a stable manner,

while shaping its compliance level according to the invariant

characteristics of the demonstrations. This permits the robot

to perform the task precisely. It is worth mentioning that

an equation similar to (20) is obtained for vt, which can

be theoretically interpreted as the optimal interaction input

generated by the human, that can be used for simulation

purposes. In the HRC context, such an external input is

directly given by the human counterpart.

VI. EXPERIMENT

We test the performance of our approach in an experiment

where a human-robot dyad transports an object from an

initial location to a desired target, similarly to [15]. However,

in [15] the robot was not able to behave with different

compliance levels, because both the stiffness and damping

matrices were manually set by the user. The robot was also

not endowed with force feedback during reproduction, and

the proposed formulation did not consider the minimization

of the robot effort and human intervention.

The detailed description about the setting, the demonstra-

tion and reproduction phases as well as the obtained results

are given below.

A. Description

The experiment consists of teaching a robot to simul-

taneously handle position, velocity and force constraints

arising when a human and a robot cooperatively manipu-

late/transport an object (see Fig. 2). At the beginning of

the transportation task, two participants reach for the object.

Once they make contact with the load, they start jointly

transporting the object along a bell-shaped path to reach the

target location. When the object gets to the final position, the

two persons release it and move away from it. Note that both

the starting and goal object positions vary across repetitions.

The aim is to introduce a robot into such a task by replacing

one of the human participants by a robot.

For this experiment, we used a torque-controlled 7 DOF

WAM robot endowed with a 6-axis force/torque sensor. The

robot controller is defined by (2) and (5). In the demonstra-

tion phase, the gravity-compensated robot is kinesthetically

guided by the teacher while cooperatively achieving the task

with the other human partner, as shown in Fig. 2. The teacher

shows the robot both the path to be followed and the force

pattern it should use while transporting the load.

In this task two candidate coordinate systems (P = 2)

are considered, namely, the frames representing the ini-

tial and target locations of the object. They are respec-

tively defined as {bS , AS} and {bT , AT }. Here, bS =
[ 0 xS⊤

01×6]
⊤

and bT = [ 0 xT⊤
01×6]

⊤

, where xS and

xT are the Cartesian positions where the object is picked

up and then released. Similarly, the transformation matri-

ces are defined as AS = blockdiag(1,RS ,RS ,RS) and

AT = blockdiag(1,RT ,RT ,RT ), where RS and RT

respectively represent the initial and final orientation of the

object with rotation matrices.2 The motion in this experiment

is time-driven, therefore each datapoint ξt is defined as

ξI

t = t and ξO

t = ζt, where t and ζt are time and the

whole state of the robot, respectively.

During reproduction of the task, the start and target frames

are given to the model in order to obtain the temporary

2The positions and orientations of the object were predefined in this
experiment, but these can alternatively be obtained using a vision system.
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Fig. 4: Estimated desired state of the robot ζ̄ and its asso-

ciated variance Σ̂
O

along a reproduction of the cooperative

transportation. Position, velocity and forces are respectively

given in meters, meters per second, and Newtons.

GMM parameters using (6)-(8). The orientation of the end-

effector is fixed. Then, the robot and the user transport the

object towards the target location. Here, for each time step t,

the robot obtains an updated reference state ζ̄ (see Section

IV) along with optimal stiffness, damping and force gain

matrices, that generate a new desired acceleration in the

operational space of the robot.

B. Results

A set of five examples of the collaborative behavior are

given to the robot. The demonstrations are then used for

training a TP-GMM (K=7 empirically determined). Figure

3 shows the resulting encoding of the position trajectories

observed from the two different candidate frames. Notice

how the multiple demonstrations are locally consistent when

the robot approaches the initial location of the object (i.e.,

frame S), and when the manipulator moves away once

the load has been placed at its target position (i.e., frame

T ). This is reflected by the small and narrow ellipsoids

in these parts of the task. Given this model and a new

set of task parameters (i.e., initial and target locations), it

is possible to compute, in an online manner, the desired

state of the robot and associated covariance at each time

step, as described in Section IV. Figure 4 displays the

desired position, velocity and interaction force and their

corresponding variances obtained by GMR. Note that the

reference position trajectory can vary as the initial and/or

target locations change, as evidenced in Fig. 5 where several

reproductions with different task parameters are shown. Also,

note that the interaction forces at the beginning and the end of

the reproduction are expected to be zero, coinciding with the

parts of the task when the robot is approaching or releasing

the object (see Fig. 4).

Figure 6 shows how KP , KV and KF vary over time

along one of the reproduction attempts shown in Fig. 5, with

Rt = rI6×6 and r=0.01. Notice that at the beginning and

at the end of the task, the robot behaves less stiffly along x1,

while being stiffer along the axes x2 and x3. The robot does

not allow high variations on the plane (x2,x3), guaranteeing

that the object is picked up and released by passing through

trajectories consistent with the demonstrations. In contrast,

−0.05 0.35 0.75
−0.4

0

0.4

x1

x
2

−0.05 0.35 0.75
−0.4

0

0.4

x1

x
3

−0.4 0 0.4
−0.4

0

0.4

x2

x
3

Fig. 5: Reproductions with varying initial and target locations

of the object.

as expected, when the human-robot dyad is cooperatively

transporting the load, the robot behaves stiffly along x1,

while allowing deviations on the plane (x2,x3). Lastly, Fig.

7 displays the behavior of the robot for two different cases,

namely, when the interaction force is similar to the reference

force profile obtained by GMR, and when some perturbation

forces are applied at the end-effector. In the latter case, the

user exerted different force profiles along the three Cartesian

axes (the shaded area in Fig. 7 shows when the perturbations

occurred). Note that by checking the difference between

the robot’s trajectory and the desired path (first row in

Fig. 7), it is observed that the robot reacts to deviations

along the axis x1, while perturbations along x3 are slightly

permitted in the middle of the task. This is coherent with

the demonstrated task constraints and with the feedback

gain profiles shown in Fig. 6. A video accompanying this

paper shows the results of the experiment, and is available at

http://programming-by-demonstration.org/IROS2015/.

VII. CONCLUSIONS AND FUTURE WORK

We introduced a PbD framework for learning cooperative

robot skills in the context of human-robot object trans-

portation. Our approach brings together the advantages of

probabilistic encoding, generalization capability of the task-

parametrized GMM, and robustness of optimal control used

with both position and force constraints. This framework

allows the robot to automatically encode the human demon-

strations and their interconnection with parameters of the

task. Moreover, in contrast to [15], the robot is able to ex-

ploit the observed variability for estimating different optimal

compliance levels over time, while determining the precision

with which the state variable errors need to be compensated

for. Lastly, our approach reduces robot effort and human

intervention, thus favoring safer interactions. Experiments on

a real setting showed the strengths and practical use of the

approach.

The proposed model was used to learn a time-driven robot

motion, where part of the desired state also depend on the

parameters of the task. In this sense, we plan in future work

to avoid the explicit time dependence by taking advantage of

methods that also encapsulate the sequential information of

the task. We also plan to study how to exploit the structure

of our cost function in order to include safety constraints

as a function of the interaction with the human. Moreover,

further work is required to investigate how the state of the

user could be included into the loop, so that the robot could

react in various ways to its human partner’s actions.
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Fig. 6: Profiles of the diagonal values of the estimated stiffness, damping and force gain matrices during the reproduction

of the cooperative transportation.
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(a) Interaction force similar to demonstrations. (b) Interaction with perturbations.

Fig. 7: Reproductions of the cooperative transportation. The first row shows the robot trajectory (solid line) and the desired

path (dashed line) in the three planes of the Cartesian space. The remaining rows show the position, velocity and sensed

force of the robot over time (solid lines), along with corresponding feedback gain (represented as an envelope surrounding

the reproduced trajectory).
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