
Experimental Results for Set-based Control within the
Singularity-robust Multiple Task-priority Inverse Kinematics

Framework

Signe Moe1, Gianluca Antonelli2, Kristin Y. Pettersen1 and Johannes Schrimpf3

Abstract— Inverse kinematics algorithms are commonly used
in robotic systems to achieve desired behavior, and several
methods exist to ensure the achievement of numerous tasks
simultaneously. The multiple task-priority inverse kinematics
framework allows a consideration of tasks in a prioritized order
by projecting task velocities through the null-spaces of higher
priority tasks. Recent results have extended this framework
from equality tasks to also handling set-based tasks, i.e. tasks
that have an interval of valid values. The purpose of this
paper is to further investigate and experimentally validate this
algorithm and its properties. In particular, this paper presents
experimental results where a number of both set-based and
equality tasks have been implemented on the 6 Degree of
Freedom UR5 which is an industrial robotic arm from Universal
Robots. The experiments validate the theoretical results.

I. INTRODUCTION

Robotic systems with a large number of Degrees of
Freedom (DOFs) are frequently used for industrial purposes
[1] and are becoming increasingly important within a variety
of fields, including unmanned vehicles such as underwater
[2] and aerial [3] systems.

Traditionally, robotic systems are controlled in their joint
space. However, the tasks they are required to execute are
often defined in the operational space, for instance given
by the desired end effector position or orientation. On a
kinematic level, the most common approach is to use a
Jacobian-based method as a mapping from operational to
joint space [4]-[6]. In particular, the pseudo-inverse Jacobian
is defined for systems that are not square or have full rank,
and is a widely used solution to the inverse kinematics
problem [7]-[9].

A robotic system is defined as kinematically redundant
if it possesses more DOFs than those required to perform
a certain task [10]. In this case, the ”surplus” DOFs can
be employed to achieve several tasks using Null-Space-
Based (NSB) behavioral control, also known as multiple
task-priority inverse kinematics [11]. This framework, which

1S.Moe and K.Y.Pettersen are with the Center for Autonomous
Marine Operations and Systems (AMOS), at The Department
of Engineering Cybernetics, Norwegian University of Science
and Technology (NTNU), Trondheim, Norway {signe.moe,
kristin.y.pettersen}@itk.ntnu.no

2G.Antonelli is with the Department of Electrical and Information
Engineering, University of Cassino and Southern Lazio, Cassino, Italy
antonelli@unicas.it

3J.Schrimpf is with The Department of Engineering Cybernetics, Norwe-
gian University of Science and Technology (NTNU), Trondheim, Norway
johannes.schrimpf@itk.ntnu.no

possesses nice stability qualities [12] and has been success-
fully implemented on several robotic systems [13], [14], has
been developed for equality tasks, which specify exactly
one desired value for given states of the system. However,
for a general robotic system, several objectives may not be
described as equality tasks, but as set-based tasks, which are
tasks that have a desired set of values rather than one exact
desired value (e.g. staying within joint limits or avoiding
obstacles) [15]. As recognized in [16], the multiple task-
priority inverse kinematics algorithm is not suitable to handle
set-based tasks directly, and these tasks are therefore usually
transformed into more restrictive equality constraints through
potential fields or cost functions [17], [18].

A first attempt to systematically include set-based tasks in
a prioritized task-regulation framework is proposed in [19]
and further improved in [20]. To handle the set-based tasks,
the algorithms in [19], [20] transform the inverse kinematics
problem into a QP problem, and therefore they can not
be utilized directly into the multiple task-priority inverse
kinematics algorithm. In [21], set-based tasks are handled
by resorting to proper activation and regularization functions,
but has the limitation that set-based tasks are only considered
with higher priority than the equality tasks of the system.

A method to include set-based tasks in the NSB frame-
work is first introduced in [22], and further formalized and
analyzed in [23]. The result is an on-line kinematic control
algorithm that generates a real-time reference for the systems
joint velocities. A set-based task is ignored while the task
value is within its valid set, and the remaining tasks of
the system then decide the trajectory. On the border of the
valid set, the set-based task either remains ignored, or it is
implemented as an equality task with the goal of freezing the
task on the boundary. The proposed algorithm will choose
the latter if the other tasks of the system push the set-based
task out of its valid set. In the opposite case, the set-based
task is still ignored. This results in a switched system with
2n modes, where n is the number of set-based tasks. The
system is proven to achieve asymptotic convergence of all
equality tasks and satisfaction of all high-priority set-based
tasks, given that the tasks are linearly independent and the
generated reference is followed [23]. The purpose of this
paper is to further investigate and experimentally validate
this algorithm and its properties proven in [23]. The set-based
tasks that have been implemented are collision avoidance and
field of view (FOV). Joint limit avoidance, limited workspace
and manipulability are examples of other tasks suitable to be

considered as set-based tasks.
The experiments were run on a 6 DOF industrial manipula-

tor from Universal Robots - the UR5. It is equipped with joint
servo controllers produced by the robot manufacturer, and is
both highly suitable and commonly used for experimental
verification of control algorithms [24]-[27].

This paper is organized as follows: Section II describes
the UR5, the overall control structure and communication
protocol used in the experiments. Section III defines the
tangent cone of a closed set, which is a crucial part of the
implemented algorithm. The concrete implemented examples
are presented in Section IV, followed by the experimental
results in Section V. Conclusions are given in Section VI.

In this paper, vectors and matrices are expressed in
bold. Furthermore, a task is denoted as σσσ (or σ for one-
dimensional tasks). Equality tasks are marked with number
subscripts and set-based with letters. Furthermore, σ̃σσ =
σσσdes−σσσ denotes the task error, i.e. the difference between
the desired and actual task value. JJJ†

a is the MoorePenrose
pseudoinverse of the Jacobian matrix JJJa, and NNNa , III− JJJ†

aJJJa
denotes the corresponding null-space matrix with the prop-
erty JJJaNNNa ≡ 000.

II. UR5 AND CONTROL SETUP

A. UR5 Kinematics

The UR5 is a manipulator with 6 revolute joints, and the
joint angles are denoted qqq ,

[
q1 q2 q3 q4 q5 q6

]T.
In this paper, the Denavit-Hartenberg (D-H) parameters are
used to calculate the forward kinematics. The parameters are
given in Table I and illustrated in Fig. 1.

Joint ai [m] αi [rad] di [m] θi [rad]
1 0 π/2 0.089 q1
2 -0.425 0 0 q2
3 -0.392 0 0 q3
4 0 π/2 0.109 q4
5 0 -π/2 0.095 q5
6 0 0 0.082 q6

TABLE I: Table of the D-H parameters of the UR5. The
corresponding coordinate systems can be seen in Fig. 1.

Hand-Eye Calibration and Inverse Kinematics of Robot Arm 583

samples from real robot arm is utilized for performance analysis. Furthermore,
this work is implemented as an initial step towards a realtime vision-guided
robotic manipulation system based on neural network.

The remainder of this paper is organized as follows: The overall platform
consisting of a robot arm and a stereo vision system is described in Section 2.
In Section 3, the feedforward neural network is briefly introduced. Then, the
training of neural networks for calibration and inverse kinematics is presented.
In Section 4, the experimental validation and performance comparison are dis-
cussed. Finally, conclusions are given in Section 5.

2 System Overview

As mentioned in the previous section, in the present work the neural network is
applied for a 6-DOF robot arm (’hand’) with a stereo vision system (’eye’). In
this section, these two hardware components will be introduced.

2.1 6-DOF Robot Arm

Universal robot UR5 is a 6-DOF robot arm with relatively lightweight (18.4 kg),
see Fig. 2. It consists of six revolute joints which allows a sphere workspace
with a diameter of approximately 170 cm. The Movements close to its boundary
should be avoided considering the singularity of the arm. The arm is equipped
with a graphic interface PolyScope, which allows users to move the robot in a
user-friendly environment through a touch screen. In this work, the connection
to the robot controller is realized at script level using TCP/IP socket. Once the

z0
x0

z1

z6
z5

z4
z3

z2

q1

q2

q3

q4 q5

q6

Fig. 2. UR5 robot and its joint coordinate system. Left : UR5 robot and PolyScope
GUI [15]; Right : joint coordinate system.

Fig. 1: Coordinate frames corresponding to the D-H param-
eters in Table I. Illustration from [24].

B. Control Setup and Communication Protocol

The UR5 is equipped with a high-level controller that can
control the robot both in joint and Cartesian space. In the
experiments presented here, a calculated reference qqqref is sent
to the high-level controller, which is assumed to function
nominally such that

qqq≈ qqqref. (1)
From this reference, q̇qqref and q̈qqref are extrapolated and sent
with qqqref to the low-level controller.

The structure of the system is illustrated in Fig. 2. The al-
gorithm from [23] is implemented in the kinematic controller
block. Every timestep, a reference for the joint velocities
is calculated and integrated to desired joint angles qqqref.
This is used as feedback to close the kinematic loop and
as input to the dynamic controller, which in turn applies
torques to the joint motors. The communication between
the implemented algorithm and the industrial manipulator
system occurs through a TCP/IP connection which operates
at 125 Hz. The algorithm itself is implemented in Python.

Kinema'c)
Control)

Equality)and))
set.based)tasks)

Dynamic)
Control)

Robot)
manipulator)

Industrial)manipulator)system)

)

∫)
)

q,)q,)q).)))..)qref)qref)
.)))Desired)values)

for)eq.)tasks)
Boundary)values)
for)set.based)tasks)

Γ)

Fig. 2: The control structure of the experiments. The tested
algorithm is implemented in the kinematic controller block.

III. TANGENT CONE

This section presents the tangent cone of a closed set,
which is used in the implementation to decide which set-
based tasks are activated. For a detailed description of the
algorithm and theoretical background, the interested reader
is referred to [23].

The tangent cone of a closed set C
C = [a,b] (2)

is defined as

TC(σ) =

 [0,∞) σ = a
R σ ∈ P

(−∞,0] σ = b
(3)

where P is the interior of C.
In the implementation, the following boolean function is

used to check if the time-derivative of a set-based task σ

with a valid set C = [σmin,σmax] is in the tangent cone of C,
i.e. σ̇ ∈ TC(σ):

bool in_T_C(sigma_dot,sigma,sigma_min,sigma_max)
if sigma > sigma_min and sigma < sigma_max

return True
else if sigma <= sigma_min and sigma_dot >= 0

return True
else if sigma <= sigma_min and sigma_dot < 0

return False
else if sigma >= sigma_max and sigma_dot <= 0

return True
else if sigma >= sigma_max and sigma_dot > 0

return False

in_T_C is illustrated in Fig. 3.

σmin$
$

σmax$
$

σ$

σ$>$0$

σ$<$0$

σ$=$0$.$

.$

.$

Fig. 3: Graphic illustration of in_T_C with return value
True shown in green and False in red. The function only
returns False when σ is outside or on the border of its
valid set and the derivative points away from the valid set.

Note that in the implementation of the tangent cone, the
border is not implemented as a perfect equality as in the
definition (3), but as an inequality (i.e. σ ≤ σmin rather than
σ = σmin). This is to handle small numerical inaccuracies
that result from discretization of a the continuous system.
Furthermore, given initial conditions outside the valid set C,
the chosen implementation is still well-founded.

IV. IMPLEMENTED EXAMPLES

In this section, three individual implemented tasks (po-
sition control, collision avoidance and field of view) are
defined and numeric values are given for their desired
value/valid set (Section IV-A). These tasks have then been
implemented in three examples with different combinations
of task priority and set-based/equality tasks. The examples
are described in Sections IV-B to IV-D.

A. Implemented Tasks

Three tasks make up the basis for the experiments: Posi-
tion control, collision avoidance, and FOV. In the examples,
position control is always implemented as an equality task
and collision avoidance as a set-based task. FOV has been
implemented as both an equality (Example 1) and a set-based
(Examples 2 and 3) task.

1) Position Control: The position of the end effector
relative to the base coordinate frame is given by the forward
kinematics. The analytical expression can be found through
the homogeneous transformation matrix using the D-H pa-
rameters given in Table I.

σσσpos = fff (qqq) ∈ R3 (4)

σ̇σσpos = JJJpos(qqq)q̇qq =
d fff
dqqq

q̇qq (5)

In these experiments, the system has been given two
waypoints for the end effector to reach:

pppw1 =
[
0.486 m −0.066 m −0.250 m

]T
,

and (6)

pppw2 =
[
0.320 m 0.370 m −0.250 m

]T
.

(7)
A circle of acceptance (COA) of 0.02 m is implemented

for switching from σσσpos,des = pppw1 to σσσpos,des = pppw2. The task
gain matrix has been chosen as

ΛΛΛpos = diag(
[
0.3 0.3 0.3

]
). (8)

This relatively low task gain it to ensure that the position
task does not ask for too great joint velocities even when
the task error is large, which would cause the UR5 to enter
a security stop mode.

2) Collision Avoidance: To avoid a collision between the
end effector and an object at position pppo ∈ R3, the distance
between them is used as a task:

σCA =
√
(pppo−σσσpos)T(pppo−σσσpos) ∈ R (9)

σ̇CA = JJJCA(qqq)q̇qq =−
(pppo−σσσpos)

T

σCA
JJJpos(qqq)q̇qq (10)

In all experiments, two obstacles have been introduced,
hence two collision avoidance tasks are necessary. The
obstacles are positioned at

pppo1 =
[
0.40 m −0.25 m −0.33 m

]T and (11)

pppo2 =
[
0.40 m 0.15 m −0.33 m

]T
,

(12)
and have a radius of 0.18 m and 0.15 m, respectively. This
radius is used as the minimum value of the set-based collision
avoidance task to ensure that the end effector is never closer
to the obstacle center than the allowed radius, see Table II-
IV. For the collision avoidance task, it is only necessary to
ensure that the distance between the obstacle and end effector
is greater than some radius to avoid collision, and hence this
task does not have a maximum limit. Because the task is
only considered as a high-priority set-based task, it is not
necessary to choose a task gain.

3) Field of View: The field of view is defined as the
outgoing vector of the end effector, i.e. the z6-axis in Fig. 1.
This vector expressed in base coordinates is denoted aaa∈R3,
and can be found through the homogeneous transformation
matrix using the D-H parameters.

aaa = ggg(qqq) ∈ R3 (13)

ȧaa = JJJFOV,3DOF(qqq)q̇qq =
dggg
dqqq

q̇qq (14)

FOV is a useful task when directional devices or sensors are
mounted on the end-effector and they are desired to point in
a certain direction aaades ∈ R3. In these experiments,

aaades ≡
[
1 0 0

]T (15)
is constant, and the task is defined as the norm of the error
between aaa and aaades:

σFOV =
√
(aaades−aaa)T(aaades−aaa) ∈ R (16)

σ̇FOV = JJJFOV(qqq)q̇qq =− (aaades−aaa)T

σFOV
JJJFOV,3DOF(qqq)q̇qq (17)

In Example 1, FOV is implemented as an equality task.
Since σFOV is defined as the norm of the error, σFOV,des = 0.
In Examples 2 and 3, FOV is implemented as a set-based
task with a maximum value to limit the error between aaa
and aaades. Here, the maximum value for the set-based FOV
task is set as 0.2622. This corresponds to allowing the angle
between aaades and aaa being 15◦ or less. The gain for this task
is chosen as

ΛFOV = 1. (18)

Note in (10) and (17) that JJJCA and JJJFOV are not defined for
σCA = 0 and σFOV = 0, respectively. In the implementation,
this is solved by adding a small ε > 0 to the denominator of
these two Jacobians thereby ensuring that division by zero
does not occur.

B. Example 1

In Example 1, FOV is implemented as an equality task,
and the system has two set-based tasks.

Name Task description Type Valid set C
σa Collision avoidance Set-based Ca = [0.18,∞)
σb Collision avoidance Set-based Cb = [0.15,∞)
σσσ1 Position Equality -
σ2 Field of view Equality -

TABLE II: Implemented tasks in Example 1 sorted by
decreasing priority.

According to [23], a system with 2 set-based tasks have
22 = 4 modes to consider: One containing only the equality
tasks, one where σa is frozen, one where σb is frozen and
one where σa and σb are frozen. However, in this case, the
two obstacles have no points of intersection. Hence, it will
never be necessary to freeze both σa and σb, and thus the
system has three modes:

Mode 1: q̇qqref = fff 1 , JJJ†
1ΛΛΛ1σ̃σσ1 +NNN1JJJ†

2Λ2σ̃2 (19)

Mode 2: q̇qqref = fff 2 , NNNaJJJ†
1ΛΛΛ1σ̃σσ1 +NNNa1JJJ†

2Λ2σ̃2 (20)

Mode 3: q̇qqref = fff 3 , NNNbJJJ†
1ΛΛΛ1σ̃σσ1 +NNNb1JJJ†

2Λ2σ̃2 (21)

Using the fact that σ̇a = JJJa fff 1 and σ̇b = JJJb fff 1 in mode 1,
the pseudocode below illustrates the implementation of the
system:

a = in_T_C(J_a*f1,sigma_a,0.18,infty)
b = in_T_C(J_b*f1,sigma_b,0.15,infty)

if a==True and b==True
mode = 1
q_dot_ref = f1

else if a==False
mode = 2
q_dot_ref = f2

else if b==False
mode = 3
q_dot_ref = f3

C. Example 2

In Example 2, FOV is implemented as a high-priority set-
based task, and the system has three set-based tasks in total.

Name Task description Type Valid set C
σa Collision avoidance Set-based Ca = [0.18,∞)
σb Collision avoidance Set-based Cb = [0.15,∞)
σc Field of view Set-based Cc = (−∞,0.2622]
σσσ1 Position Equality -

TABLE III: Implemented tasks in Example 2 sorted by
decreasing priority.

According to [23], this should result in 23 = 8 modes to
consider. However, as in Example 1, we can discard the two
modes where both σa and σb are frozen. Thus, 6 modes have
to be considered:

Mode 1: q̇qqref = fff 1 , JJJ†
1ΛΛΛ1σ̃σσ1 (22)

Mode 2: q̇qqref = fff 2 , NNNaJJJ†
1ΛΛΛ1σ̃σσ1 (23)

Mode 3: q̇qqref = fff 3 , NNNbJJJ†
1ΛΛΛ1σ̃σσ1 (24)

Mode 4: q̇qqref = fff 4 , NNNcJJJ†
1ΛΛΛ1σ̃σσ1 (25)

Mode 5: q̇qqref = fff 5 , NNNacJJJ†
1ΛΛΛ1σ̃σσ1 (26)

Mode 6: q̇qqref = fff 6 , NNNbcJJJ†
1ΛΛΛ1σ̃σσ1 (27)

In mode 2 and 5 σa is frozen, meaning σ̇a ≡ 0. Hence, in
mode 2, in_T_C will always return True with σa as input,
and it is therefore unnecessary to check this condition. The
same applies to σb in modes 3 and 6, and σc in modes 4, 5
and 6. Thus, the pseudocode of the implementation is given
below:
a1 = in_T_C(J_a*f1,sigma_a,0.18,infty)
b1 = in_T_C(J_b*f1,sigma_b,0.15,infty)
c1 = in_T_C(J_c*f1,sigma_c,-infty,0.2622)
b2 = in_T_C(J_b*f2,sigma_b,0.15,infty)
c2 = in_T_C(J_c*f2,sigma_c,-infty,0.2622)
a3 = in_T_C(J_a*f3,sigma_a,0.18,infty)
c3 = in_T_C(J_c*f3,sigma_c,-infty,0.2622)
a4 = in_T_C(J_a*f4,sigma_a,0.18,infty)
b4 = in_T_C(J_b*f4,sigma_b,0.15,infty)
b5 = in_T_C(J_b*f5,sigma_b,0.15,infty)
a6 = in_T_C(J_a*f6,sigma_a,0.18,infty)

if a1==True and b1==True and c1==True
mode = 1
q_dot_ref = f1

else if b2==True and c2==True
mode = 2
q_dot_ref = f2

else if a3==True and c3==True
mode = 3
q_dot_ref = f3

else if a4==True and b4==True
mode = 4
q_dot_ref = f4

else if b5==True
mode = 5
q_dot_ref = f5

else if a6==True
mode = 6
q_dot_ref = f6

D. Example 3

In Example 3, FOV is implemented as a low-priority set-
based task.

Name Task description Type Valid set C
σa Collision avoidance Set-based Ca = [0.18,∞)
σb Collision avoidance Set-based Cb = [0.15,∞)
σσσ1 Position Equality -
σc Field of view Set-based Cc = (−∞,0.2622]

TABLE IV: Implemented tasks in Example 3 sorted by
decreasing priority.

The implementation is very similar to Example 2. How-
ever, lower-priority set-based tasks can not be guaranteed to
be satisfied at all times [23]. Hence, if the FOV error exceeds
the maximum value of 0.2622, rather than attempting to
freeze the task at its current value, an effort is made to push
it back to the boundary of the valid set:

σ̃c = σFOV,max−σc = 0.2622−σc (28)

Example 1 Example 2 Example 3

End effector
trajectory.
Obstacles
shown as
spheres and
waypoints
as red dots.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
−0.5

0

0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

y [m]x [m]

z
[m

]
Waypoints pw 1 and pw 2

End effector trajectory σ1(t)

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
−0.5

0

0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

y [m]x [m]

z
[m

]

Waypoints pw 1 and pw 2

End effector trajectory σ1(t)

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
−0.5

0

0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

y [m]x [m]

z
[m

]

Waypoints pw 1 and pw 2

End effector trajectory σ1(t)

(c)

Active
mode over
time.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Time [s]

M
o
d
e

Mode

(d)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Time [s]

M
o
d
e

Mode

(e)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Time [s]

M
o
d
e

Mode

(f)

Distance
to obstacle
centers over
time.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [s]

D
is
ta

n
c
e
[m

]

σa
σ b
σa,min
σ b ,m in

(g)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [s]

D
is
ta

n
c
e
[m

]

σa
σ b
σa,min
σ b ,m in

(h)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [s]

D
is
ta

n
c
e
[m

]

σa
σ b
σa,min
σ b ,m in

(i)

Norm of
the error
between
desired and
actual FOV
vectors over
time.

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [s]

N
o
rm

o
f
F
O
V

e
rr
o
r
v
e
c
to

r

σ2

(j)

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [s]

N
o
rm

o
f
F
O
V

e
rr
o
r
v
e
c
to

r

σ c
σ c ,max

(k)

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [s]

N
o
rm

o
f
F
O
V

e
rr
o
r
v
e
c
to

r

σ c
σ c ,max

(l)

Fig. 4: Logged data from experimental results.

Mode 1: q̇qqref = fff 1 , JJJ†
1ΛΛΛ1σ̃σσ1 (29)

Mode 2: q̇qqref = fff 2 , NNNaJJJ†
1ΛΛΛ1σ̃σσ1 (30)

Mode 3: q̇qqref = fff 3 , NNNbJJJ†
1ΛΛΛ1σ̃σσ1 (31)

Mode 4: q̇qqref = fff 4 , JJJ†
1ΛΛΛ1σ̃σσ1 +NNN1JJJ†

cΛcσ̃c (32)

Mode 5: q̇qqref = fff 5 , NNNaJJJ†
1ΛΛΛ1σ̃σσ1 +NNNa1JJJ†

cΛcσ̃c (33)

Mode 6: q̇qqref = fff 6 , NNNbJJJ†
1ΛΛΛ1σ̃σσ1 +NNNb1JJJ†

cΛcσ̃c (34)

Similarly to Example 2, σa and σb are frozen in modes
2 and 5, 3 and 6 respectively. However, since σc is a low-
priority set-based task, it can not be guaranteed that it is

frozen on the border of Cc. Therefore, unlike Example 2,
in_T_C might return False in modes 4, 5 and 6 with
σc as input. Even so, in these modes, an attempt is made
to satisfy the set-based task by actively pushing σc back to
the border of Cc and even if this attempt is unsuccessful
(in_T_C = False with σc as input), it is not due to the
task not being handled, but because it is a lower-priority task.
Therefore, this condition is not checked in modes 4, 5 and
6, and the implementation is identical to Example 2 with
modes defined by (29)-(34).

(a) t = 0 s (b) t = 16 s (c) t = 40 s

Fig. 5: Pictures from simulation and actual experiments, Example 1. In the simulation, the base and end effector coordinate
system is illustrated with green, blue and red axes for the x-, y- and z-axes respectively. These correspond to the coordinate
frames of the actual robot.

V. EXPERIMENTAL RESULTS

This section presents the results from running Examples
1-3 on the UR5 manipulator. The relevant logged data is
illustrated in Fig. 4, and Fig. 5 displays screenshots/images
from simulation and actual experiment from Example 1.

In all examples, the position task is fulfilled as predicted
by the theory [23], i.e. the two waypoints are reached by the
end effector. Furthermore, the end effector avoids the two
obstacles by locking the distance to the obstacle center at
the obstacle radius until the other active tasks drive the end
effector away from the obstacle center on their own accord.
This can be seen in Figures 4a-4c, and is also confirmed by
Figures 4g-4i: The set-based collision avoidance tasks never
exceed the valid sets Ca and Cb, but freeze on the boundary
of these sets.

Figures 4d-4f display the active mode over time, and
confirm that mode changes coincide with set-based tasks
either being activated (frozen on boundary/leaving valid set)
or deactivated (unfrozen/approaching valid set). An increase
in mode means a new set-based task has been activated and
vice versa.

In Example 1, FOV is implemented as an equality task
with lower priority than the position task with the goal of
aligning the FOV vector aaa with aaades =

[
1 0 0

]T. This
corresponds to the z-axis of the end effector being parallel
to the x-axis of the base coordinate system. As can be seen in
Fig. 4j, the norm of the error between aaa and aaades converges
to zero at about t = 30 s, and Fig. 5 shows that in the end
configuration, these two vectors are indeed parallel.

In Example 2, FOV is a high-priority set-based task with
a maximum value of 0.2622, corresponding to the angle
between aaa and aaades not exceeding 15◦. The task has initial

conditions outside its valid set Cc (Fig. 4k). However, the
other active tasks naturally bring the FOV closer to and
eventually (at around t = 4 s) into Cc, and thus it is not
necessary to freeze σc. Once σc enters Cc, the task will
always stay in this set. At around t = 13 s, the system enters
mode 4 and σc is frozen because the error between the actual
and desired FOV vectors has reached its upper limit and
keeping the task deactivated would result in the maximum
value being violated. Shortly after, the end effector reaches
the second obstacle, and so mode 6 is activated where both
σb and σc are frozen. Once the end effector has moved
around the obstacle, σb is released. σc, however, can not
be released without leaving Cc, and so the system goes back
to mode 4 and remains there for the duration of the example.

In Example 3, FOV is a low-priority set-based task with
the same maximum value as Example 2. By comparing
Figures 4k and 4l it is evident that these implementations
behave similarly until t = 13 s, when the system enters
mode 4 and activates σc. In Example 2, the task is frozen
on the boundary, which is guaranteed due to the fact it is
high priority. As explained in Section IV, low priority set-
based tasks can not be guaranteed to actually freeze on the
boundary, and they are therefore activated with the goal of
pushing the task back to its boundary. This is confirmed by
Fig. 4l. In this example, σc does indeed exceed its maximum
value in spite of the system activating the task. However,
eventually σc converges back to the boundary of Cc.

Figures 4j and 4l show that implementing FOV as a lower
priority equality and set-based render similar results. As
expected, the equality task converges to the exact desired
value and the set-based to the boundary of the valid set.
Even so, in the case that the system has several other tasks
with even lower priority, it might be beneficial to implement

FOV as a set-based task as this imposes less constraint on
the lower-priority tasks when inactive.

VI. CONCLUSIONS

A method proposed in [22], [23] for incorporating set-
based tasks in the singularity-robust multiple task-priority
inverse kinematics framework has been illustrated and val-
idated in this paper. In particular, the method has been
implemented on a 6 DOF UR5 manipulator. Three examples
have been constructed to test various qualities and the
performance of the algorithm. In summary, the experimental
results confirm the following properties:
• All equality tasks converge to their desired value.
• All high-priority set-based tasks with initial conditions

in their valid set C stay in this set ∀t ≥ 0.
• All high-priority set-based tasks with initial conditions

outside C can only 1) freeze at the current value, or
2) move closer to C. Hence, the initial condition is the
maximum deviation from C.

• If a high-priority set-based task with initial conditions
outside its valid set eventually enters C, it will stay in
this set ∀t ≥ te, where te is the time the task entered the
set.

• Lower-priority set-based tasks are not necessarily satis-
fied.

Furthermore, it is suggested that implementing a low-
priority task as set-based rather than as an equality task is
less restrictive on even lower priority tasks as they are not
affected by the set-based task when it is not active. This
remains a topic for future work.

ACKNOWLEDGMENTS

This work was supported by the Research Council of
Norway through the Center of Excellence funding scheme,
project number 223254, and by the European Commu-
nity through the projects ARCAS (FP7-287617), EuRoC
(FP7-608849), DexROV (H2020-635491) and AEROARMS
(H2020-644271). The authors would also like to thank
Magnus C. Bjerkeng at Sintef ICT, Department of Applied
Cybernetics, for sharing advice and experience regarding
implementation on the UR5 manipulator.

REFERENCES

[1] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics.
Springer Berlin Heidelberg, 2008.

[2] G. Antonelli, Underwater Robots, Third Edition. Springer Interna-
tional Publishing, 2014.

[3] K. Valavanis, P. Oh, and L. A. Piegla, Unmanned Aircraft Systems.
Springer Netherlands, 2009.

[4] D. Nenchev, Y. Umetani, and K. Yoshida, “Analysis of a redun-
dant free-flying spacecraft/manipulator system,” IEEE Transactions on
Robotics and Automation, vol. 8, no. 1, pp. 1–6, 1992.

[5] F. Caccavale and B. Siciliano, “Kinematic control of redundant free-
floating robotic systems,” Advanced Robotics, vol. 15, no. 4, pp. 429–
448, 2001.

[6] O. Egeland and K. Pettersen, “Free-floating robotic systems,” in
Control Problems in Robotics and Automation. Springer Berlin
Heidelberg, 1998, vol. 230, pp. 119–134.

[7] C. Klein and C.-H. Huang, “Review of pseudoinverse control for use
with kinematically redundant manipulators,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 13, no. 2, pp. 245–250, 1983.

[8] S. Chiaverini, G. Oriolo, and I. D. Walker, Springer Handbook of
Robotics. Heidelberg, D: B. Siciliano, O. Khatib, (Eds.), Springer-
Verlag, 2008, ch. Kinematically Redundant Manipulators, pp. 245–
268.

[9] S. R. Buss, “Introduction to inverse kinematics with jacobian trans-
pose, pseudoinverse and damped least squares methods,” IEEE Journal
of Robotics and Automation, vol. 17, pp. 1–19, 2004.

[10] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: mod-
elling, planning and control. Springer Verlag, 2009.

[11] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The Null-Space-Based
behavioral control for autonomous robotic systems,” Intelligent Service
Robotics, vol. 1, no. 1, pp. 27–39, 2008.

[12] G. Antonelli, “Stability analysis for prioritized closed-loop inverse
kinematic algorithms for redundant robotic systems,” IEEE Transac-
tions on Robotics, vol. 25, no. 5, pp. 985–994, October, 2009.

[13] F. Arrichiello, J. Das, H. Heidarsson, S. Chiaverini, and G. Sukhatme,
“Experiments in autonomous navigation with an under-actuated sur-
face vessel via the null-space based behavioral control,” in Proc.
IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics (AIM 2009), July 2009, pp. 362–367.

[14] F. Arrichiello, S. Chiaverini, G. Indiveri, and P. Pedone, “The null-
space based behavioral control for a team of cooperative mobile robots
with actuator saturations,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2009), Oct 2009, pp. 5911–
5916.

[15] H. Hanafusa, T. Yoshikawa, and Y. Nakamura, “Analysis and control
of articulated robot arms with redundancy,” in Proc. 8th ZFAC World
Congress, 1981.

[16] O. Kanoun, F. Lamiraux, and P. Wieber, “Kinematic control of
redundant manipulators: Generalizing the task-priority framework to
inequality task,” IEEE Transactions on Robotics, vol. 27, no. 4, pp.
785–792, 2011.

[17] O. Khatib, “The potential field approach and operational space for-
mulation in robot control,” in Adaptive and Learning Systems: Theory
and Applications, K. S. Narendra, Ed. Springer US, 1986.

[18] B. Faverjon and P. Tournassoud, “A local based approach for path
planning of manipulators with a high number of degrees of freedom,”
in Proc. IEEE International Conference on Robotics and Automation,
vol. 4, 1987, pp. 1152–1159.

[19] O. Kanoun, F. Lamiraux, and P. Wieber, “Kinematic control of
redundant manipulators: Generalizing the task-priority framework to
inequality task,” Robotics, IEEE Transactions on, vol. 27, no. 4, pp.
785–792, 2011.

[20] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” Inter-
national Journal of Robotics Research, 2013.

[21] E. Simetti, G. Casalino, S. Torelli, A. Sperindé, and A. Turetta,
“Floating Underwater Manipulation: Developed Control Methodology
and Experimental Validation within the TRIDENT Project,” Journal
of Field Robotics, vol. 31, no. 3, pp. 364–385, 2013.

[22] G. Antonelli, S. Moe, and K. Pettersen, “Incorporating set-based
control within the singularity-robust multiple task-priority inverse
kinematics,” in Proc. 23rd Mediterranean Conference on Control and
Automation, Torremolinos, Spain, 2015.

[23] S. Moe, A. Teel, G. Antonelli, and K. Pettersen, “Stability analysis for
set-based control within the singularity-robust multiple task-priority
inverse kinematics framework,” in Proc. 54th IEEE Conference on
Decision and Control, 2015.

[24] H. Wu, W. Tizzano, T. T. Andersen, N. A. Andersen, and O. Ravn,
“Hand-eye calibration and inverse kinematics of robot arm using
neural network,” Advances in Intelligent Systems and Computing, vol.
274, pp. 581–591, 2014.

[25] J. J. H. Lee, K. Frey, R. Fitch, and S. Sukkarieh, “Fast path plan-
ning for precision weeding,” in Proc. of Australasian Conference on
Robotics and Automation, Melbourne, Australia, 2014.

[26] S. Moe and I. Schjolberg, “Real-time hand guiding of industrial
manipulator in 5 dof using microsoft kinect and accelerometer,” in
Proc. 22th International Symposium on Robot and Human Interactive
Communication (IEEE RO-MAN), Gyeongju, Korea, 2013, pp. 644–
649.

[27] M. Bjerkeng, J. Schrimpf, T. Myhre, and K. Pettersen, “Fast dual-
arm manipulation using variable admittance control: Implementation
and experimental results,” in Proc. 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2014), Sept 2014,
pp. 4728–4734.

	INTRODUCTION
	UR5 AND CONTROL SETUP
	UR5 Kinematics
	Control Setup and Communication Protocol

	TANGENT CONE
	IMPLEMENTED EXAMPLES
	Implemented Tasks
	Position Control
	Collision Avoidance
	Field of View

	Example 1
	Example 2
	Example 3

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	References

