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Abstract

A calibration and refraction correction process for underwater cameras with flat-

pane interfaces is presented that is very easy and convenient to use in real world

applications while yielding very accurate results. The correction is derived from

an analysis of the axial camera model for underwater cameras, which is among

others computationally hard to tackle. It is shown how realistic constraints

on the distance of the camera to the window can be exploited, which leads to

an approach dubbed Pinax Model as it combines aspects of a virtual pinhole

model with the projection function from the axial camera model. It allows

the pre-computation of a lookup-table for very fast refraction correction of the

flat-pane with high accuracy. The model takes the refraction indexes of water

into account, especially with respect to salinity, and it is therefore sufficient to

calibrate the underwater camera only once in air. It is shown by real world

experiments with several underwater cameras in different salt and sweet water

conditions that the proposed process outperforms standard methods. Among

others, it is shown how the presented method leads to accurate results with a

single in-air calibration and even just estimated salinity values.
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1. Introduction

Cameras are very important sensors for underwater applications in general.

This includes ship hull, pipeline and other inspection missions (Hollinger et al.,

2012; Kim & Eustice, 2013; Foresti, 2001; Asakawa et al., 2000; Negahdaripour

& Firoozfam, 2006; McLeod et al., 2013; Galceran et al., 2014), habitat map-5

ping (Davie et al., 2008; Bodenmann et al., 2013), vehicle station-keeping (Ne-

gahdaripour & Fox, 1991; Marks et al., 1994; Lots et al., 2000), archeology (Bing-

ham et al., 2010; Chapman et al., 2010; Hue et al., 2011) or search and recovery

missions (Purcell et al., 2011) to just name a few examples - a short overview

with respect to underwater vision on unmanned underwater vehicles (UUV),10

e.g., is given in (Horgan & Toal, 2006).

Flat-panel glass windows are commonly used for underwater camera hous-

ings. While domes provide optical advantages, they have to be specially engi-

neered to fit the camera and the integration is not trivial. Flat pane windows

are hence simply a much less expensive and more flexible choice. On the other15

hand, flat ports introduce significant distortions due to the refraction at the air-

glas and glas-water interfaces. The predominant way to handle the distortions

is to use a standard perspective projection model and to perform a standard

camera calibration in-situ, i.e., in the water or by including estimated correction

factors, see e.g., (Shortis & Harvey, 1998; Gracias & Santos-Victor, 2000; Pessel20

et al., 2003; Pizarro et al., 2003; Lavest et al., 2003; Negahdaripour et al., 2006,

2007; Brandou et al., 2007; Sedlazeck et al., 2009; Johnson-Roberson et al., 2010;

Kunz & Singh, 2010; Beall et al., 2011; Kang et al., 2012).

But Treibitz et al. (2008, 2012) show that flat port cameras do not posses a

single viewpoint (SVP), i.e., the perspective projection model is invalid for flat25

ports. This is also supported by other works (Li et al., 1997; Kunz & Singh, 2008;

Chari & Sturm, 2009; Gedge et al., 2011; Yamashita et al., 2011; Sedlazeck &

Koch, 2011; Jordt-Sedlazeck & Koch, 2012; Agrawal et al., 2012; Servos et al.,
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2013; Jordt-Sedlazeck & Koch, 2013; Chen & Yang, 2014; Jordt-Sedlazeck &

Koch, 2012; Yau et al., 2013).30

In Kunz & Singh (2008) the errors caused by not compensating the refractive

distortions are discussed in some detail and they are identified to be significant,

however no solution to this problem is presented. A mathematical model of un-

derwater imaging through planar glass ports is introduced in (Chari & Sturm,

2009). Matrices corresponding to fundamental and homography matrices are35

derived. They however depend on the incident angle of the light ray corre-

sponding to each image pixel, so they can not be used directly for underwater

vision methods. Since no continuation of this work was published, their results

remain as theoretical considerations of conceptual value. In addition to a deep

theoretical treatment of the general problem, Treibitz et al. (2008, 2012) provide40

an approach for a single refractive layer, i.e., when the window is negligibly thin

and the problem can be reduced to only a single air-water interface.

Important insights into the problem and ways towards a solution are pre-

sented in (Agrawal et al., 2012) where a flat port camera is identified to be in

fact an axial camera. Agrawal et al. (2012) derive a 12th degree polynomial that45

must be solved to project a 3D point onto an image plane in this case. A method

is proposed for calibration of the camera but it requires knowledge of the full

3D geometry of the calibration points in the environment - a requirement which

is difficult if not impossible to fulfill in underwater applications. Furthermore,

the underlying axial model does not allow for a rectification of single images50

as the axial model implies that the points are lying on complex curves. Corre-

spondences across multiple images can be in principle be exploited, but this is

computationally very complex as also pointed out in Jordt-Sedlazeck & Koch

(2013).

When using multiview methods, the SVP model can lead to reasonable re-55

sults as explicitly discussed in (Kang et al., 2012). Nevertheless, Jordt-Sedlazeck

& Koch (2013) build on the results from Agrawal et al. (2012) by proposing a

refractive Structure from Motion (SfM) method by augmenting the standard

perspective SfM process by incorporating a new error function in the optimiza-
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tion and report clear improvements. While this is an interesting approach, it60

requires sufficiently many images with sufficiently different views of the scene

and it is still computationally very demanding. Note that though we use stereo

vision for validation purposes in the experiment section, we do not use any two-

or multiview information. Stereo data is just used in our experiments as it

facilitates a metric analysis of the errors. Our method is perfectly suited for65

the calibration and rectification of single camera images, i.e., the most general

case of underwater vision. Our method can hence also be of interest for stereo

or multiview approaches - including refractive ones like in (Jordt-Sedlazeck &

Koch, 2013) - by providing excellent initial guesses for the camera parameters,

hence allowing for faster convergence and possibly even more accurate results.70

In this article we make two main contributions. First, we discuss the prob-

lem of underwater camera modeling from a practitioners viewpoint. We provide

illustrating examples of the underlying effects and their relevance to real world

applications. To some extent, this also bridges some apparent contradictions

found in the literature that can be explained when contrasting theoretical con-75

siderations with typical application cases. Second, we provide an approach for

calibration and refraction correction of underwater images that is very con-

venient to use in real world applications and that is at the same time very

accurate. This pinax model is based on a virtual pinhole camera model - for

which we show that it is applicable for real world underwater housings where80

the camera is relatively close to the flat-pane - while using the projection func-

tion of an axial camera. The pinax model incorporates the water refraction

index, for which - as also experiments show - it is sufficient to derive it through

(estimated) salinity to achieve accurate results. It is hence sufficient to cali-

brate the underwater camera only once in air, thus replacing tedious in water85

calibrations before or during missions. For the rectification, a look-up table

is generated using as mentioned the projection function of the axial model, for

which we show that it can be used in a significantly simplified fashion within the

pinax model. The look-up table can be easily computed a priori and allows very

fast real-time refraction correction of single images. Real world experiments90
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with different cameras in different sweet and salt water environments show that

the pinax model outperforms standard methods. The code for using the pinax

model is provided in MATLAB, and the Robot Operating System (ROS) and

freely usable for academic purposes.

2. Problem Formulation and Motivational Examples95

2.1. Flat-Panel Camera Setup

The following setup is considered. A physical camera pCam that follows

the standard SVP model with an intrinsics matrix pK is enclosed in a water

sealed housing with a flat glass panel through which it observes the underwater

environment. The glass panel is flat and both sides are parallel. The glass100

panel introduces distortions that are to be handled by a virtual camera model

vCam that interprets the environment scene from the physical camera pCam.

The overall underwater setup of the physical camera plus its housing with a

flat-pane window submerged into water is denoted as the underwater camera

uCam. When the underwater camera is in air, e.g., for the calibration, it is105

denoted with u
aCam.

If not mentioned otherwise, we refer in the following with the term camera to

the complete underwater set-up and use the terms virtual camera and physical

camera to refer to the model vCam of the glas-panel refraction, respectively to

the in-air physical device pCam inside the housing.110

The main object of interest for this article is the virtual camera model

vCam to handle the refraction induced distortions. The related notations and

a schematic view are presented in Fig. 1. Following parameters are used:

• d0 - distance from the center of projection of pCam to the glass window,

• d1 - thickness of the glass,115

• x - distance to point of intersection of the light ray with the camera axis,

• ∆x - length of the focus section,
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• na, ng, nw - refraction indexes (scaled so that na = 1),

• n - normal vector to the glass surface,

• α - incident angle.120

Figure 1: Schematic view of a Flat Port setup: d0 - distance from the center of projection to

the glass window, d1 - thickness of the glass, x - distance to point of intersection of the light

ray with the camera axis, ∆x - length of the focus section, na, ng , nw - refraction indexes,

scaled so that na = 1, n - normal vector to the glass surface, α - incident angle. The blue line

represents the physically accurate light ray; the green line is the apparent ray traced back to

the camera’s optical axis.

2.2. The Flat Port Setup as an Axial Camera

As shown in (Agrawal et al., 2012), the physically accurate model of a flat-

port underwater camera corresponds to an axial camera model. So, light rays

creating the image do not intersect in one point, as in the SVP pinhole model,

but they all cross one line, called the axis of the camera. Using the pinhole125

camera model requires therefore to approximate the focus section, i.e., the line

segment on the axis on which rays cross, with a single point. The conclusion

is that the quality of this approximation depends directly on the length ∆x
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of this section. In the limit case, the pinhole camera can be seen as an axial

camera where the focus section of the camera axis is infinitely short. To analyze130

the refraction, ray tracing through the air-glass-water interface and the appar-

ent intersection of the rays in the water with the camera axis can be modeled

(compare Fig. 1):

β = arcsin sinα
ng

γ = arcsin sinα
nw

135

δ = π
2 − γ

For the sake of simplicity, we assume that the refractive plane normal and

therefore the camera axis in the axial model is parallel to the optical axis of the

camera. This assumption is without loss of generality since the incident angle

α, i.e., the only parameter related to camera rotation, is one of the inputs,140

which can be easily rotated by a fixed off-set. For the sake of completeness, the

equations for finding incident angles α given the camera pose in the housing is:

v0 = K−1p

α = arccos v0
Tn

|v0||n|

where K is the intrinsic parameter matrix and p represents pixel coordinates145

on the image.

The focus distance x for each light ray (Fig. 1) can be computed as:

x = tan δ(d0 tanα+ d1 tanβ)

2.3. Length of the Focus Section

Consider an example setup with a glass refraction index ng = 1.5, a water150

refraction index of nw = 1.335 and a glass thickness of d1 = 10mm. Plotting

the change of x as a function of the incident angle α and of the distance d0

illustrates a very important aspect (Fig. 2). As d0 grows, the changes in the

focus distance depending on the incident angle α (along X axis) become more

significant, i.e., there is a higher range of focus distances with increasing d0.155

This is further illustrated in the following.
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Figure 2: The focus distance x (in mm) as a function of d0 and α for an example setup with a

glass refraction index of ng = 1.5, a water refraction index of nw = 1.335 and a glass thickness

of d1 = 10mm. It can be seen that the changes in the focus distance x for different incident

angles α become more significant for increasing distances d0 of the physical camera to the

flat-pane.
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Figure 3: The length of the focus section (∆x) as a function of d0 and d1. It can be seen

that the influence of the distance d0 of the physical camera to the flat-pane is more significant

than the thickness d1 of the glas-pane.
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Fig. 3 shows the length of the focus section ∆x as a function of d0 and d1.

We assume in this illustrative example a glass refraction index of ng = 1.5 and

a water refraction index of nw = 1.335. The plot shows that changes in d0 are

much more significant than changes in d1, i.e., the distance of the camera to the160

flat-pane window has a stronger effect than the thickness of the glass window.

This effect is caused by a relatively small difference between the refraction index

of glass (≈ 1.5) and the average water refraction index (≈ 1.33, (Roswell et al.,

1976)) compared to the more significant refraction on the glass-air interface. In

Fig. 3 it can be also observed that the best approximation of the axial camera165

model with a pinhole model occurs for small values of d0.

Figure 4: Example distances where the light rays traced back from the water cross the optical

axis of the camera depending on d0. Different lines correspond to different incident angles

ranging from 0 to 35 degrees, i.e., a physical camera with a field of view of 70 degrees.

To further motivate and illustrate this, Fig. 4 shows where the light rays in

water cross the camera’s optical axis for different values of d0. Each line on the

graph corresponds to a different incident angle ranging from 0 to 35 degrees,
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i.e., a physical camera with a field of view of 70 degrees. It can be seen that170

they never cross the same spot, but for some optimal d0, they are very close to

intersecting in one point. To find this optimal value for some given parameters

the following method is used. We implemented ray tracing based on the above

formulation of the model. Then non-linear optimization is used to minimize

the length of the section where light rays back-traced from the water intersect175

with the camera optical axis. For example, for the case where d1 = 10mm, the

glass refraction index ng = 1.5, and the water refraction index nw = 1.335, the

method converges to d0 = 1.4282mm where all light rays intersect the optical

axis on a section ∆x that is only 0.0079mm long, i.e., within a very good

approximation of a single point. The result of this numerical analysis allows to180

define the middle of this section ∆x as a secondary center of projection placed

0.5851mm away from the glass panel. For this case, the virtual camera can be

treated as an SVP camera and represented with the pinhole model.

This example motivates that although the pinhole camera model does not

represent the actual physical state, for the purpose of underwater vision it may185

be used as basis for a model if the distance between the center of projection of

pCam and the glass plane is very small. This is a realistic assumption as there

are no reasons to design excessive housing sizes, i.e., the physical camera inside

a housing is usually placed quite close to the flat-pane window.

2.4. Influence of the Distance of the Camera to the Flat-Panel190

The influence of the distance of the physical camera to the flat pane is

now further illustrated in a other motivational example. The thickness of the

glass panel d1 is assumed to be constant at d1 = 10mm. For different values

of d0, the camera is calibrated with a standard procedure. The calibration

input data is based on 27 simulated checkerboards in 3D space (Fig. 5) by195

projecting the corner points to the image plane using the full physical model

including refraction. This forward projection requires solving the twelve-degree

polynomial introduced in (Agrawal et al., 2012). This data is hence used to

calibrate the camera as if it would be underwater.
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Figure 5: Poses of the calibration patterns used for a further motivational experiment in

simulation.
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In a second step, a set of 100 random 3D points in front of the underwater200

camera is generated. This set is then projected onto the image plane twice for

each d0. Once, the projection is performed with the full physical model to get

the expected image coordinates and a second time with the camera matrix from

calibration using the pinhole model including undistortion. Then the distance

between corresponding points (also called reprojection error) is calculated and205

used to evaluate the pinhole approximation for the the different d0. Fig. 6 and 7

show the results by plotting the average distance between corresponding points

for the different d0 values.

Note that we consider here values of d0 up to 500mm. Values within this

range can be found in the literature for experimental setups, especially in the210

highly relevant works of Agrawal et al. (2012) and Treibitz et al. (2012). Such

big values are used because then the effects of the axial camera model are clearly

visible and for example the position of the camera in the housing can be found

with nonlinear optimization. There may be applications were the distance of the

physical camera to the flat-pane is quite large, e.g., when observing objects in an215

aquarium and the physical camera needs to keep a significant clearance to the

aquarium window for some reason. However, this scenario is very unrealistic for

underwater cameras. Excessive housing sizes to allow for significant distances

d0 are neither necessary nor desirable for underwater applications.

2.5. Rectification Accuracy near the Calibration Distance for SVP220

The following simulation example is designed to illustrate that regardless

of the setup parameters it is possible to get a reasonable approximation of the

physical state with a standard SVP pinhole model, if the observed part of the

scene is always observed from roughly the same distance D and the camera

calibration was done at about the same distance, i.e., the calibration pattern225

was moved underwater in front of the camera in also roughly the distance D.

This illustrates that, e.g., for mosaicking with a vehicle camera in a (roughly)

fixed distance over ground, good rectification results with a pinhole model can

be achieved if the calibration pattern was moved in water at roughly the same

13



Figure 6: An example with a refraction-based (green) and a pinhole (red) projection of random

points in the scene for d0 = 1mm (top), 300mm (center), and 500mm (bottom) respectively.

Note the increasing deviations in the models with increasing d0.
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Figure 7: An example of the reprojection error for changing d0. Note that for d0 = 0−10mm

the errors caused by the SVP approximation can be neglected. The graph is not as smooth

as may be expected, e.g., as in Fig. 3, because the simulated patterns were not always in the

optimal positions for calibration, e.g., they did not always cover the whole field of view of the

camera - which is a very natural effect that can also be observed in real world conditions.
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Figure 8: Arrangement of calibration patterns used for calibrating the camera in an example il-

lustrating the effects of the distance of the calibration in the pinhole model under unfavourable

parameter conditions.
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distance. On the other hand, errors emerge once the camera is looking at parts230

of the scene that are closer or further then D.

The setup parameter are as follows: d0 = 80mm, d1 = 20mm, i.e., a signifi-

cant amount of space between the focal point of the physical camera lens and the

glas panel plus a relatively thick glas pane. So, the parameters, especially d0,

are in this case relatively unfavourable. In this illustrating example, the camera235

is calibrated with 27 pattern poses spread around a point 2 m away from the

camera (Fig. 8). Then test points are generated again randomly but around a

given distance from the camera and, using the same method as above, projected

onto the image plane. The reprojection error against the point distance to the

camera is shown in Fig. 9.240

Figure 9: The reprojection error for a changing distance of observed points to the camera as

an example that the SVP pinhole model performs well if the observed points are close to the

distance in which the camera was calibrated with an SVP model. In this simulation example,

the camera was calibrated with patterns around 2 m away from the camera (Fig.8), which is

exactly the distance were the reprojection error is minimal.
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The pinhole model holds very well only around the distance of calibration.

This shows that for some specific applications, where minimizing d0 is not pos-

sible, e.g., due to physical size of the lens as part of the camera subcomponent

in the housing, the pinhole model can still be effectively used if the environment

is observed from a known constant distance. As mentioned, one of the applica-245

tions fulfilling this assumption can be seabed mosaicking with constant altitude

control of the observing AUV.

This effect can also be observed in (Kang et al., 2012) where the quality of

Structure from Motion under an SVP model is investigated and good results are

reported even for a larger distance of the camera to the window. The camera250

rig used in the experiments leads to a constant distance between the camera

and the investigated object, hence the effect illustrated in this subsection takes

place.

3. The Pinax Model

3.1. Overview255

Based on the previous considerations, we propose a system where a few setup

assumptions are used to compensate for the refraction-based distortions of the

image. Specifically, a transformation is computed to undistort and rectify the

camera images. The resulting images can be directly used for example in stereo

vision algorithms or for mosaicking to just name two examples.260

The following assumptions are made:

1. The distance d0 between the glass and the center of projection is small

and near the optimal spot d∗0 where the rays traced back from the water

cross in a minimum focus section ∆x∗.

2. The optical axis of the camera is perpendicular to the glass surface. To265

achieve this a correcting transformation may be applied, e.g. for converged

stereo systems.

3. The glass thickness and its approximate refraction index are known, e.g.,

using standard refraction indexes for glass or plexiglass.
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4. The water refraction index is approximately known from tables, e.g., from270

(Roswell et al., 1976).

Fulfilling these assumptions allows to assume a pinhole model for the virtual

camera and hence allows to model the refraction-based distortions very effi-

ciently. It also makes it possible to omit any underwater calibration procedures.

The first assumption in the above list is of course by far the strongest and most275

significant one. As motivated before, it is at least not unrealistic to assume

that underwater housings are minimized for size and that hence the physical

camera inside the housing is placed as closely as possible to the window. This

assumption is also supported by the real world experiments presented later on.

3.2. In-Air Calibration280

As a first step in our method, the physical camera pCam is calibrated once

in air, i.e., its intrinsic matrix pK is determined using any standard calibration

process (Hartley & Zisserman, 2003). From a practical viewpoint it is very

interesting to note that the front window does not have to be removed from the

housing. Concretely, the physical camera pCam can be calibrated by calibrating285

the underwater camera u
aCam in air, i.e., by determining its intrinsic matrix u

aK.

The air-glass and glass-air refractions only lead to a change in scale in the

images, which is part of the extrinsics, and the relative geometric relations be-

tween points in the scene are preserved. A calibration process of the underwater

camera u
aCam in air is hence the same as if calibrating pCam, i.e., pK = u

aK.290

If the calibration of the physical camera was already done outside of the

housing, e.g., by the manufacturer, it is of course perfectly fine to use that data.

The in-air calibration of the full underwater system is only an option that is

very convenient to use for already existing complete camera systems. For high

quality in-air calibration, the according tool in CamOdoCal(Heng et al. (2013,295

2014, 2015)) is used in our experiments presented later on in Sec. 4.
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Table 1: Optimal d∗0/vd∗0 of the centers of projection of the physical/virtual camera for dif-

ferent glass thicknesses and two common salinity values

d1 [mm] nw = 1.333(sweet water) nw = 1.342(salty water)

1 0.15mm/0.06mm 0.14mm/0.06mm

3 0.45mm/0.18mm 0.42mm/0.17mm

5 0.76mm/0.31mm 0.70mm/0.29mm

10 1.52mm/0.61mm 1.40mm/0.58mm

15 2.28mm/0.92mm 2.10mm/0.87mm

20 3.04mm/1.22mm 2.80mm/1.15mm

3.3. Determining the Optimal d∗0

In an ideal scenario, the optimal distance d∗0 between the glass and the

center of projection can be taken into account when designing a new underwater

camera. More precisely, the optimal distance pd∗0 of the physical camera should300

be taken into account as the model of the virtual camera vCam has its own,

slightly different vd∗0 as disussed in more detail in the following section.

As already sketched in section 2.3, ray tracing and non-linear optimization

can be used to minimize the length of the section where light rays back-traced

from the water intersect with the camera optical axis. The MATLAB code for305

these computations is provided as supplementary material to this article.

Using pd∗0 in a camera design is as mentioned the ideal scenario and we only

include its computation here for the sake of completeness. In most application

cases, the underwater camera is an off-the-shelf system or an already finished

design, respectively other design constraints on the housing or the physical310

camera/lens components may apply. But we consider it safe to assume that for

any typical underwater housing the real distance ˆpd0 is sufficiently close to pd∗0.

As illustrated in Tab. 1, pd∗0 tends to be in the order of a few millimeters and

less. At the same time, the physical length of lenses tends to be in the order of

their focal lengths, i.e., the center of projection tends to be at the front-end of315

the lenses of the camera device. Hence placing the physical camera as close as
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possible to the glass-pane with maybe a small air gap, i.e., using the standard

default set-up for typical underwater cameras, leads to a close approximation of

pd∗0 by ˆpd0 with negligible errors. An exact quantification of the related errors

is discussed below in the following sections.320

3.4. Refraction and Lens distortion Modeling with Maps

Figure 10: Parameters of the analytical forward projection through a flat refractive panel with

a 12th degree polynomial (From supplementary materials to Agrawal et al. (2012)).

The main conclusion from the assumptions in Sec. 3.1, especially from as-

sumption 1 about the distance of the physical camera to the window, is that a

pinhole camera model can be used for the virtual camera model with a negligi-

ble error. Concretely, we exploit this insight by defining a virtual pinax plane325

ppa = (dpa,npa) that is assumed to be at distance dpa in the scene with a

normal vector npa that is parallel to the camera axis. The distance dpa is set

fixed to 5m as this is considered a typical viewing distance; but as discussed

below, the exact value is of minor interest as points on pinax planes at differ-

ent distances behave similar due to the virtual pinhole camera property that330

follows from small values of d0. vp and pp denote homogeneous image pixel

coordinates. The intensity or color value of a given pixel is denoted as I(p).
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Each point vp from the image vI of the virtual camera vCam is projected

onto the pinax plane ppa using a pinhole camera projection. Then this point

mw is projected forward to the inside surface of the glass panel (point ma) using335

the method derived from Agrawal et al. (2012). Now ma may be transformed to

pp with the in air calibration parameters of pCam to obtain pixel coordinates

in the distorted image pI. This last step may be performed using any cam-

era and lens distortion model, referenced in Algorithm 1 with the subroutine

project3dToImage(). When the calibration of the physical camera is based on a340

pinhole camera model with no lens distortion, this is:

pp=pK ·ma

pp=pp · 1
ppz

In order to find the point q1 (point corresponding to ma, expressed in coor-

dinate frame z1, z2) as shown in figure 10 (compare also figure 1), the twelfth-345

degree polynomial method derived in Agrawal et al. (2012) is used. For the

sake of completeness we shortly present the most important findings of Agrawal

et al. (2012) here. As discussed before, it can be shown that a camera behind a

flat glass panel is an axial camera. The camera axis is assumed to be identical

to the optical axis. When tracing the light path all the refractions happen in350

one plane, called plane of refraction (POR), so the analysis can be conducted

in 2D. To do this mw must be projected to POR. The new coordinate system

is defined as follows. Axis z1 is identical to the camera axis, z2 is orthogonal

to z1 and lays on POR. This way mw projected to [ux, uy] may be used for

calculations.355

(k21D1 + k23D2 − k22D1D2)2 − 4k21k
2
3D1D2 = 0
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where

k1 = x(d0 + d1 − uy)

k2 = (ux − x)

k3 = −d1x

D1 = d20n
2
g + n2gx

2 − x2

D2 = d20n
2
w + n2wx

2 − x2

let M be an associative array

for vp ∈ vI do

mw = vK−1· vp · dpa
z1 = (0, 0, 1)

T

z2 = z1 × (z1 ×mw)

ux = z2 ·mw

uy = z1 ·mw

q1=solve12thDegPoly(setupParams,[ux, uy])

ma = q1 x · z2 + q1 d · z2
pp=project3dToImage(CameraAndLensModel,ma)

store key-value pair (vp,p p) in M

end

Algorithm 1: Creating correction maps in the Pinax Model (compare Fig.

11).

The method solving this polynomial to find q1 is referenced with the sub-

routine solve12thDegPoly() in Algorithm 1.

This procedure that combines a pinhole forward and an axial backward pro-

jection has to be computed only once and leads to an image transformation for360

undistortion and rectification stored in a lookup table (compare Algorithm 1,

2 and Fig. 11). The main contribution in the context of the pinax model is of

course Algorithm 1, i.e., the way the correction map is created, while Algorithm

2 is just the standard procedure for applying correction maps for rectification,

which is included here for the sake of completeness.365
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Let M be an associative container created with algorithm 1

for vp ∈ vI do
look up value pp for key vp in M

a = floor(pp)

bx = ppx − ax

by = ppy − ay

c1 = bx · pI(a) + (1− bx) · pI(a + (1, 0, 0)
T

)

c2 = bx · pI(a + (0, 1, 0))
T

+ (1− bx) · pI(a + (1, 1, 0)
T

)

vI(vp) = by · c1 + (1− by) · c2
end

Algorithm 2: Applying Pinax correction maps

Figure 11: Left: The map creation in the Pinax model that combines a projection from the

virtual pinhole camera to the pinax plane (green ray) and back with an axial projection to

the physical camera (blue ray). Right: The virtual (green) rays are good approximations of

the physical rays (blue) once they cross from the glass panel into water - and the small d0

assumption is fulfilled.
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3.5. Numerical Error Analysis

Figure 12: Errors between the look up pixel value for the optimal ∗d0 and the pinax plane

distance of 5m and scene points that are at different distances than the pinax plane, respec-

tively for which in addition d0 deviates from the optimal ∗d0. Note that as long d0 is close to

∗d0, the location of the point in the scene has no influence.

The essential assumption in our model is that the correction computed for

points in the pinax plane also generalizes for other points in the scene. Further-

more, we postulate that minor variations in d̂0 are negligible and that typical

underwater cameras are already designed such that near optimal conditions are370

fulfilled. Fig. 12 shows the maximum errors between look up pixel values for

the optimal ∗d0 and a pinax plane distance of 5m and scene points that are at

different distances than the pinax plane, respectively if in addition d0 deviates

from the optimal ∗d0.

Fig. 12 shows that the errors are very small, i.e., in the order of at most a few375

millimeters over some meters distances, even with significant deviations of d0

from ∗d0 of up to 40mm, i.e., under the presence of severe air gaps between the
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camera and the front panel. Only if the physical camera is significantly placed

away from the glas panel pronounced errors occurs. If d0 is quite close ∗d0,

i.e., if the air gap is small, the theoretical errors are even negligible considering380

realistic camera parameters. It can also be noted that the error becomes smaller

for larger distances of the scene points.

3.6. The Role of Changes in the Water Refraction Index

Figure 13: The maximum (red) and average (green) error caused by changes of the water

refraction index in an example camera set-up. The error is measured as the displacement of

the estimated light ray from the proper one at a 5 m distance from the camera.

The computation of the pinax correction map takes the refraction index

of the water into account. It is important to note that even seemingly small385

changes from a nominal value of nw = 1.34 have noticeable effects. Consider

our standard example set-up in combination with the water refraction indexes

nw = 1.33 and nw = 1.35, i.e., only about ±0.75% from the nominal value.

Fig. 13 shows the errors for the different refraction indexes in this example.
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The errors are computed as the displacement of the estimated light ray from390

the proper one at a 5 m distance from the camera. Both the maximum error,

which occurs for rays under the maximum incident angle, as well as the average

error over all rays are shown. The errors are substantial, i.e., though there is

only a very small change in the water refraction index it is very beneficial to

take it into account. This also holds for other methods in general as as shown in395

the experimental results section. While it is sufficient to simply recompute the

correction map in the pinax model, which can be done very fast and without the

need of gathering any additional vision data, the standard in water calibration

approach requires a new recording of in-situ data to avoid errors.

In our experiments presented below, we simply use estimated salinity and400

the related refraction indexes from tables (Roswell et al., 1976), which we found

sufficiently precise to accommodate for the effects of changing water refraction

indexes. Nevertheless, the exact water refraction index can also be computed

from physical parameters, e.g., by using the formulas from Millard & Seaver

(1990) or Quan & Fry (1995). The predominant factors is the influence of405

salinity followed by a much lesser extent by temperature. Very commonly used

CTD sensors provide exactly this information, i.e., it is very simple to get an

exact indirect measurement of the water refraction index if needed. As the

computation of the correction map is relatively fast (see Sec.4.1), this even

allows for a online re-computation of the correction map during the mission if410

the conditions change, e.g., if the camera on a vehicle operating at sea passes an

sweet water inflow or if a mission ranges from warmer shallow waters to much

colder deep waters.

4. Experiments and Results

4.1. Overview415

In this section, we complement the previous theoretical discussions and nu-

merical analyses of the pinax model with quantitative evaluations with real

underwater camera systems. The underwater systems are based on various
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components from different third parties. None of the systems or system compo-

nents was designed with knowledge of the pinax model. We use stereo cameras420

here for the only reason that they allow for an easier qualitative and quanti-

tative evaluation of the errors in the rectification. The pinax calibration and

rectification itself is of course directly applicable to single monocular cameras

and does not use any stereo- or multi-view information.

First, run-times for generating and applying the refraction correction maps425

are presented in Sec. 4.2. Especially the use of a correction map for rectifica-

tion is extremely fast and can hence be applied in real-time on a video stream.

Second, qualitative results from field work where the pinax model is used for

in-air calibration are presented in Sec. 4.3. The qualitative results are based

on several third party systems including a custom-made underwater camera on430

the Ifremer vehicle Vortex Brignone et al. (2011) and several COTS cameras in

custom-made underwater housings, e.g., on the AUV Sparus Mallios et al. (2011)

from the University of Girona and the AUV Seacat Enchev et al. (2015) from

ATLAS Elektronik. Third, quantitative evaluations are presented in Sec. 4.4

where the pinax model is compared to state of the art underwater calibration.435

The experiments are conducted with a Bumblebee XB3 with dual stereo, i.e.,

three monocular cameras at two different baselines, in a custom-made underwa-

ter housing and with a GoPro Hero3+ Black Edition stereo rig in a consumer

housing from GoPro. The accuracy of underwater stereo computations on arti-

ficial checker-board patterns is used in the quantitative evaluations as a metric440

of rectification accuracy.

4.2. Run-Times for Generating and Applying the Refraction Correction Maps

One of the strengths of the pinax model is its computational efficiency. The

refraction correction is done via maps, i.e., simple look-up tables for image

rectification which lead to very efficient operations very well suited for real-time445

performance. The computations of the maps themselves is also relatively fast

and can be done just once offline. The following runtimes are benchmarked on a

Intel Core i7-3610QM CPU running at 2.3 GHz, i.e., a mobile CPU that is used
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in an embedded system suited for integration on robotic vehicles, respectively

even within the camera system itself. The experiments are done once with450

MATLAB R2014a on Windows 7 and once with the Robot Operating System

(ROS) Hydro on Ubuntu 12.04. Note that no optimization is used, especially

no parallelization is employed. Both the computation of the correction map

itself as well as its application for rectification can be easily speeded up by

parallel computation, e.g., through multithreaded or CUDA programming if455

higher processing speeds are required.

Table 2: Computation times for generating the correction maps.

time

camera resolution MATLAB ROS

(h:mm:ss) (mm:ss)

Bumblebee2 1024x768 0:11:47 0:20

Bumblebee XB3 / Vortex cam 1280x960 0:18:25 0:32

GoPro Hero3+ Black Ed. 4096x2160 2:12:36 3:50

Fuji FinePix 3DW3 3648x2736 2:29:35 4:20

Tab. 2 shows the computation times of the correction maps for different cam-

eras, respectively image resolutions. The computation is linear in the number of

pixels and takes about 0.89925 msec/pixel on MATLAB, respectively 0.026042

msec/pixel on ROS. The computation of a pinax correction map has only to be460

done once. It can hence be simply computed offline.

Each pinax correction map depends - in addition to the in-air calibration map

of the underlying physical camera - on the water refraction index, i.e., especially

salinity. In the experiments reported later on, only two different correction maps

are used across a wide range of different field experiments, namely one for salty465

water and one for sweet water. As discussed in more detail in the according

sections, we found two maps to be sufficient. But for even more accurate image

rectifications, it is possible to use a CTD sensor to determine the salinity of

the water directly at the location of the mission, respectively even during the
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mission if the salinity changes. This then allows to either instantaneously switch470

between several pre-computed maps, respectively to even compute a perfectly

fitting map online, which takes in the order of at most a few minutes under ROS.

The underlying algorithm is also well suited for parallel computation allowing

faster processing if needed through multithreading or CUDA programming.

Table 3: Computation times for applying the correction maps, i.e., for rectification.

time

camera resolution MATLAB ROS

(seconds) (seconds)

Bumblebee2 1024x768 0.025 0.007

Bumblebee XB3 / Vortex cam 1280x960 0.055 0.012

GoPro Hero3+ Black Ed. 4096x2160 0.412 0.085

Fuji FinePix 3DW3 3648x2736 0.453 0.094

Tab. 3 shows the computation times to apply the correction maps, i.e., to475

perform an image rectification, for different cameras, respectively image reso-

lutions. The computation is just a look-up operation and hence very fast and

very well suited for real-time operation. The underlying algorithm is again also

well suited for parallel computation; hence it is easy to further speed it up if

necessary through multithreading or CUDA programming.480

4.3. Qualitative Results

In this section, we report qualitative results with a range of different under-

water camera systems that illustrate the usefulness of the method introduced

in this article for real world applications. Tab. 4 gives an overview of seven

different systems where the pinax-model was used on, i.e., the cameras in each485

system were calibrated just once in air and the pinax correction tables were

used for rectification of the images. The correction tables were computed with

two different refraction indices, namely nw = 1.333 for sweet water, respec-

tively nw = 1.342 for salty water. Depending on the environment conditions,

e.g., experiments in a pool or lake, respectively in the sea, the according map490
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Table 4: The different camera systems used in qualitative evaluations

camera focal imager housing

length (mm) resolution size provider

1 Bumblebee XB3 (Jacobs) 3.8 1280x960 1/3¨ U.Zagreb

2 Bumblebee XB3 (IST) 3.8 1280x960 1/3¨ U.Zagreb

3 Bumblebee2 (UdG) 2.5 1024x768 1/3¨ UdG

4 Bumblebee2 (Jacobs) 2.5 1024x768 1/3¨ ATLAS

5 Vortex Camera 4 1280x960 1/3¨ Ifremer

6 Fuji FinePix 3DW3 6.3 3648x2736 1/2.3¨ FantaSea

7 GoPro Hero3+ Black Ed. 2.65 4096x2160 1/2.3¨ GoPro

was chosen. The cameras have different technical parameters, especially with

respect to focal length or d1, and they are mounted in different housings that

were all designed by third parties without any knowledge of the pinax model.

The test systems are all stereo cameras. The advantage of stereo cameras

is in this context that they not only provide metric information, which will be495

used for a quantitative analysis later on, but that their data also provides very

good qualitative indicators of the calibration and rectification accuracy. Stereo

processing is very sensitive to the accuracy of the image rectification due to

the inherent use of the epipolar constraint. If there are distortions in the two

cameras, matching pixel blocks do not lie on the same line in the two images500

anymore, i.e., the epipolar constraint is violated, and correspondences can not

be established leading to missing range values. Hence, rectification errors not

only lead to metric errors in the range estimates but also to complete failures

in the stereo computations.

The trials with different camera systems in different environment conditions505

show following main three qualitative results that are interesting for applying

the method introduced in this article in real world applications:

1. In-air calibration of underwater cameras with the pinax model is applicable

to a range of systems and environment conditions. We applied the method
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Figure 14: A 2.5D colored point cloud (center) generated from images (left) from a custom-

made underwater stereo camera on the Vortex vehicle (right) of the Institut francais de

recherche pour l’exploitation de la mer (Ifremer). The stereo point cloud is very dense, hence

indicating a very good rectification accuracy.

to seven different systems used in different environment conditions. The510

cameras and housings were from various 3rd parties. In each case, in-

air calibration with the pinax model was successful and lead to (at least)

qualitatively comparable results to underwater calibration which was the

previous state of practice for the systems.

2. The quality of the in-air calibration matters. The pinax-model allows for515

convenient in-air calibration that only has to be done once. The final

result of the rectification is significantly influenced by the quality of this

calibration.

3. The water refraction index, especially due to salinity, matters but to a

lesser extent. Ignoring the influence of the changes in refraction of water520

due to environmental parameters, especially in form of salinity, leads to a

degradation in accuracy in the rectification.

Regarding aspect 1., the pinax model was successfully used on all seven

systems. The in-air calibration and the related image rectification lead to high

quality results in all cases as indicated by the density of the 3D point clouds525
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Figure 16: A Point Grey Bumblebee 2 stereo camera and Blueview MB2250 Multibeam

Echosounder integrated on a Seacat from ATLAS Elektronik.

generated by the stereo processing. Fig. 14 and 15 show two typical results as

illustrative examples. Note that the “holes” in the point cloud shown in the

center of Fig. 14 are just due to the perspective view, i.e., due to occlusions

in the scene. In addition to the density of the stereo results, there are also

qualitative indications of the metric accuracy. For example, Fig. 17 shows data530

from a Seacat vehicle from ATLAS Elektronik where a Point Grey Bumblebee

2 stereo camera and Blueview MB2250 Multibeam Echosounder (MBES) are

integrated (Fig. 16). The range estimates of the two sensor systems are very

close to each other, i.e., that the metric accuracy of the pinax-calibrated cameras

is in the order of the MB2250 MBES.535

Fig. 18 illustrates the aspects 2. and 3. with respect to the relevance of

the quality of the in-air calibration, respectively of the water refraction index.

The point cloud PCc shown on the right was generated in seawater by system

2 (Bumblebee XB3 (IST) with U.Zagreb housing) using our method with the

proper factory in-air calibration file as input and our standard salt-water refrac-540

tion estimation. The resulting point cloud density ∇PCc provides a comparison

baseline for a simple illustrative example.

The point cloud PCa shown on the left uses the factory in-air calibration
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Figure 17: A 3D map with the multibeam data (shown in rainbow colors to indicate depth

values) and the stereo data from the ATLAS Seacat vehicle (Fig. 16). The range estimates

from the two different sensors are very similar, thus indicating that the metric accuracy of the

pinax-calibrated cameras is in the order of the multibeam echsounder.
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(a) wrong in-air (b) wrong salinity (c) correct in-air and salinity

Figure 18: An illustration of two of the three main qualitative observations related to our

method, namely that 2. the quality of the in-air calibration matters ( a) compared to c) )

and that 3. the salinity has an influence ( b) compared to c) ).

file from exactly the same type of camera, namely the Bumblebee XB3 owned

by Jacobs with identical (nominal) parameters as the one owned by IST, and545

which is mounted in the same type of housing, namely the design by U.Zagreb.

The proper salt-water refraction index is used. Nevertheless, the point cloud

density ∇PCa is just 19.7% of the density ∇PCc. So, no correspondences can

be found for a significant portion of the pixels in both images, i.e., the necessary

epipolar constraint for stereo vision does not hold, respectively the rectification550

process is highly unsuccessful in this case.

The point cloud PCb shown in the center uses the correct factory in-air

calibration file of this specific camera instance. But our standard sweet-water

refraction index is here used in the pinax model though the data is collected

in seawater. The point cloud density ∇PCb degrades therefore to 93.2% of555

the density ∇PCc in this example. It can be noticed that there is especially

missing data at the sides of the point cloud, which is consistent with what is

to be expected when the rectification quality degrades. The distortion effects

due to refraction are most pronounced at the sides of the stereo images, hence

violations of the epipolar constraint due to degraded rectification start taking560

effect from there.

4.4. Quantitative Evaluation of the Pinax Accuracy

The numerical analysis of the pinax model as well as the qualitative ex-

periences in the field indicate that it leads to very accurate calibration and
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rectification results. This is now further substantiated with quantitative eval-565

uations of real cameras, namely a Bumblebee XB3 (Tab. 4, system 1) and a

stereo rig consisting of two GoPro Hero3+ Black Edition (Tab. 4, system 7).

Both systems are quite different and provide two interesting test cases.

Figure 19: The Point Grey Bumblebee XB3 has three monocular cameras that allow stereo

processing with a short and with a wide baseline. The checkerboard pattern underneath the

camera is used for the quantitative accuracy analysis.

Figure 20: The stereo system consisting of two Gopro Hero3+ Black Edition cameras in a

Gopro Dual HERO underwater housing.

The Bumblebee XB3 features three monocular cameras. This allows stereo

processing with a short and with a wide baseline (Fig. 19). The GoPro stereo570

system consist of a standard set-up with two cameras (Fig. 20). There are hence

five monocular cameras in total that are calibrated and rectified with the pinax
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model in the following experiments.

As it is difficult or even impossible to acquire ground truth data of natu-

ral underwater environments, the analysis is based on artificial checkerboard575

patterns where the exact distance between the black and the white fields is ac-

curately known. For the quantitative evaluations, the stereo systems are placed

in a pool in which sweet, respectively salt water is filled. The checkerboard

pattern is then moved at different distances within the field of view of each

camera. Stereo processing is conducted for each sequence of images acquired580

at the different distances. The metric stereo estimates of the distances between

the checkerboard markers are finally compared to the ground truth distances,

thus providing an error metric for the rectification accuracy.

Four different methods for calibration and rectification are evaluated, namely:

• standard in-air calibration and rectification with a pin-hole model585

• state of the art underwater calibration with a correct water refraction

index (WRI), i.e., the calibration is performed in-situ in water at exactly

the same salinity conditions as the recording of the evaluation data that

is then rectified

• state of the art underwater calibration with a wrong WRI, i.e., the calibra-590

tion is performed in a sweet water pool while the recording of the rectified

evaluation data is done in salty water

• pinax in-air calibration and rectification under arbitrary but roughly known

(sweet or salty) water conditions

Fig. 21 shows the results of the evaluations on the three different stereo set-595

ups. All errors are normalized, i.e., they are plotted as percent of the known,

measured distance between checkerboard markers. For the GoPro test sequence,

the evaluation of the in-air calibration is omitted as its rectification is perform-

ing so poorly that stereo processing is not possible anymore (Fig. 22). Also

in the case of the two Bumblebee XB3 set-ups, stereo processing for several600

of the recorded image pairs could not be performed due to poor rectification
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(a) Bumble XB3, wide baseline

(b) Bumble XB3, short baseline

(c) GoPro

Figure 21: The relative errors of the triangulated points in % for the four evaluated methods

on the three different stereo set-ups. The error bars show the upper and lower quartile values

of the error, the center dots are the medians. The error values are plotted for each nominal

distance of the calibration pattern during the test.
39



Figure 22: For the GoPro data, the in-air calibration leads to such severe distortions that the

stereo processing is completely failing in this case. On the left, an example GoPro image from

a test sequence is shown; on the right, the “corrected” image based on in-air calibration is

shown.

results with the in-air calibration. These cases would have accordingly lead to

significant metric errors; the reported average errors for the in-air calibration

are hence a very optimistic, best case estimates.

It can be seen that this quantitative evaluation supports the previous numer-605

ical and qualitative observations. The pinax calibration and rectification leads

in all cases to superior results. Most importantly, the errors are significantly

smaller than using the state of the art underwater calibration. In addition,

pinax calibration is much more conviently to use as it is based on in-air calibra-

tion. The experiments also show that the salinity matters, i.e., if state of the610

art underwater calibration is for example done in a sweet water pool and the

camera is used in the sea, the rectification quality degrades. The pinax model

takes the possible changes of the water salinity into account and is hence not

affected by this.

5. Conclusions615

In this article, the pinax model for calibration and rectification of underwa-

ter cameras in flat-pane housings was introduced. Its water/window refraction

correction was derived from an analysis of the axial camera model for underwa-
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ter cameras, which is among others computationally hard to tackle. Therefore,

realistic constraints on the distance of the camera to the window are used in the620

pinax model to combine aspects of a virtual pinhole model with the projection

function from the axial camera model. It was shown how the pinax model al-

lows the pre-computation of a lookup-table for very fast refraction correction of

the flat-pane with high accuracy. The pinax model is very convenient to use in

practice as it is based on a single, in-air calibration of the complete underwater625

camera system. The model takes the water refraction index into account for

which a rough estimate of the salinity (sweet/salty) is sufficient, respectively for

which in-situ measurements from e.g. a CTD-sensor can also be used to derive

perfectly fitting correction maps. The pinax model was analysed in this arti-

cle in three different ways. First, numerical simulations were used to illustrate630

the influences of the different parameters on the accuracy and to motivate the

model. Second, qualitative results from use-cases of the model in the field were

presented that illustrated that it worked fine with various real world systems

designed by various third parties. Third, a quantitative analysis on different

stereo systems was performed where the pinax model lead a higher accuracy635

than state of the art underwater calibration.
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