
Efficient Continuous System Integration and Validation
for Deep-Sea Robotics Applications

Tobias Fromm, Christian A. Mueller,
Max Pfingsthorn, and Andreas Birk

Robotics Group,
Computer Science & Electrical Engineering,

Jacobs University Bremen, Germany

Paolo Di Lillo

Interuniversity Center of Integrated Systems
for the Marine Environment (ISME),

University of Cassino and Southern Lazio, Italy

Abstract— Deep-sea operations of remotely-operated vehicles
(ROV) need robust testing and deployment strategies beyond
the traditional pre-deployment validation on real hardware.
Seamless integration of simulated components into the valida-
tion pipeline allows for rapid development of components and
validation under controlled conditions. We describe the benefits
arising from such a continuous integration and validation
approach as well as an example setup in the EU project
DexROV.

I. INTRODUCTION

Marine robotics have been exploring the sea in increasing
depth, being beneficial for many other fields of science
and engineering. However, deep-sea operations demand for
specialized testing and deployment strategies because the
effort and costs for failure are magnitudes higher than in
ground robotics, for example, when a remotely-operated
vehicle (ROV) malfunctions in deep sea and cannot be
retrieved anymore.

Hence, the traditional approach of running pre-deployment
validation entirely on the real hardware must be questioned
in this field because similar conditions cannot be generated
artificially. In the following, we will explain a versatile
integration and validation architecture which allows for pre-
deployment testing using simulated and real system com-
ponents besides each other in a seamless way. We propose
pre-deployment simulation as the key factor for testing single
components as well as the entire system in an efficient way.

As a deployment example we provide the EU project
DexROV (Effective Dexterous ROV Operations in Presence
of Communication Latencies, [1]).

II. SYSTEM ARCHITECTURE

DexROV features a full-fledged ROV system, deployed
from a vessel in the Mediterranean and, amongst others,
equipped with a stereo perception system and a manipulator.
Within the project, several real-life field trials have been
scheduled and partly performed already.

However, the different workgroups do not have access
to the hardware prior to the annual trials despite the need
to test their developments thoroughly. For this reason, we

The research leading to the presented results has received funding from
the European Union’s Horizon 2020 program within the project “Effective
Dexterous ROV Operations in Presence of Communication Latencies”
(DexROV).

Fig. 1. Example scene containing ROV, testing panel and terrain

assigned high priority to establish a simulation base before
implementing any business logic in order to allow developers
to work independently.

A. Simulation Framework

Since many different components need to be validated in
simulation in a real robotics scenario, we need to rely on an
established simulation framework. As such, we use Gazebo
[2] which already offers most of the necessary capabilities,
including basic marine systems simulation support in the
shape of a buoyancy plugin. Additionally, simulated sensor
data can easily be obtained by integrating various simulated
sensors into the robot models, e.g. RGB and depth cameras.

Figure 1 shows the simulation environment with an exam-
ple scene. This contains the functional ROV model along
with a model of a testing panel which features different
valves and levers, specifically generated to test the manipu-
lation capabilities of the ROV, and an example terrain (see
Section II-C).

B. ROV Simulation

In order to simulate kinematics and dynamics of the
ROV, a suitable model was integrated into the simulation
environment, containing:

– CAD models of ROV, payload skid, arm and hand, see
Fig. 2

– physical properties for all models
– several controllers for low- and high-level navigation.



(a) front view (b) side view

(c) top view

Fig. 2. ROV model

The DexROV system needs two controllers for effectively
operating the arm and the vehicle. Each controller is designed
as two nested control loops, in which the high-level controller
(HLC) is kinematic and takes as input the desired system
pose and outputs a reference system velocity, and the low-
level controller (LLC) computes the reference torque for the
motors. The architecture embedding the different controllers
is shown in Fig. 3.

The integration of these controllers within the simulation
environment has been designed by implementing two Gazebo
plugins for the low-level controllers and two Robot Operating
System (ROS) [3] nodes for the high-level controllers.

For each low-level controller, two different Gazebo plu-
gins have been developed, one purely kinematic and one
dynamic. Both of them exhibit the same interfaces in terms
of ROS topics, so they are completely interchangeable.
The kinematic ones just apply instantaneously the reference
velocity to the models in the simulation, without any kind of
dynamics. This is one of the main advantages of the usage
of a simulator, because it is very useful for validating the
correctness of the high level controllers. The dynamic low-
level controllers are standard PID controllers that take as
input the reference velocity and computes the desired forces
and torques to be applied to the models in the simulation.

The developed plugins take as parameters the PID gains
that have to be properly tuned with respect to the realistic
dynamic parameters of the vehicle and the arm models.
This kind of controller, jointly with the accurate physics
simulation, represents a good starting point for the actual
controllers design and tuning.

The high-level controllers take their inputs (vehicle current
and desired pose, joint position and end-effector desired
pose) and publish their outputs (vehicle and joint velocities)
following the algorithms described in [4] and [5].

The motion control of the arm has been developed re-
sorting to an inverse kinematics algorithm that allows to
perform multiple tasks simultaneously, defining a priority
among them. Given a task hierarchy composed by n tasks

R

O

S

T

O

P

I

C

SEnd-E ector

Desired Pose Kinematic

Low-Level

Controller

Arm

High-Level

Controller

Vehicle

High-Level

Controller

Vehicle

Desired Pose
Kinematic

Low-Level

Controller

Dynamic

Low-Level

Controller

Dynamic

Low-Level

Controller

ROS GAZEBO

Fig. 3. Controller architecture

0 5 10 15 20 25

Time [s]

0

0.05

0.1

0.15

0.2

0.25

m

End-effector Position Error

x

y

z

Fig. 4. End-effector position error on x (blue), y (red) and z (yellow) axis
over time, given a constant waypoint

σi(q) with i = 1 . . . n, the reference system velocity q̇ that
fulfills all the tasks simultaneously can be computed as:

q̇ = J†1K1σ̃1 +N1J
†
2K2σ̃2 + · · ·+N1,n−1J

†
nKnσ̃n

where J†i is the Moore-Penrose pseudoinverse of the Jaco-
bian matrix of the i-th task, Ki is a definite-positive matrix
of gains, σ̃i is the i-th task error defined as σ̃i = σi,d −σi

and N1,i is the null space of the augmented Jacobian:

J1,i =


J1

J2

...
Ji


The projection of the solutions of the lower priority tasks

into the null space of the higher priority ones deletes the
velocity components that would conflict with them. As a
representative example, in Fig. 4 and Fig. 5 the results of a
simple task hierarchy composed by the end-effector position
and orientation tasks are shown, in which a target set point
for the arm configuration has been given. The same approach
will be used to add more tasks, such as obstacle avoidance
and mechanical joint limits, in order to achieve the needed
operations for the DexROV system in a safe and effective
manner.



0 5 10 15 20 25

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
ra

d

End-effector Orientation Error

x

y

z

Fig. 5. End-effector orientation error on x (blue), y (red) and z (yellow)
axis over time, given a costant waypoint

The vehicle high-level controller exibits an interface for
receiving a list of desired waypoints via ROS topic. Each
waypoint is reached by resorting to two PI controllers for
the position and the orientation, that in this case is only a
heading controller, since the ROV is not fully actuated on the
rotational axis. Regarding the position control, the control
input u is computed as:

u = Kpe+Ki

∫ t

ti

e(τ)dτ

where Kp is the proportional gain, Ki is the integral gain
and e = pd − p is the position error. Similarly, the yaw
controller is designed as:

r = Kp,ψψ̃ +Ki,ψ

∫ t

ti

ψ̃(τ)dτ

where Kp,ψ is the proportional gain, Ki,ψ is the integral
gain and ψ̃ = ψd − ψ is the heading error.

Fig. 6 and Fig.7 show the position and heading error
relative to a list of three desired waypoints.

0 10 20 30 40 50 60

Time [s]

-8

-6

-4

-2

0

2

4

6

8

m

Vehicle Position Error

x

y

z

Fig. 6. Vehicle position error on x (blue), y (red) and z (yellow) axis over
time, given a sequence of three waypoints

0 10 20 30 40 50 60

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

2

ra
d

Vehicle Orientation Error

yaw

Fig. 7. Vehicle heading error over time, given a sequence of three waypoints

A ROS node for the teleoperation of the system has been
also developed, useful for debugging all the modules that
compose the system. This node allows to teleoperate both
the vehicle and the end-effector of the arm, by reading the
commands from a standard usb joystick and writing them on
the topics of the high-level controllers.

C. Scene Modeling

Like in real underwater settings, we model the simulated
scene in a user-friendly way to allow for the operator to
quickly perceive the current vehicle view, occupied areas and
recognized objects. In order to obtain colored point clouds,
we use a simulated depth camera beneath a simulated RGB
camera to produce the results of Fig. 8(c) & (e).

In the real underwater case, the simulated cameras are
replaced by a custom-made stereo camera system which
delivers monocular images as well as 3D point clouds. An
occupancy map [6] representation is used for environment
modeling (Fig. 8(d)). The scene model is completed with
recognized objects like the panel in Fig. 8(f), using different
texture and shape-based recognition methods.

Populating the simulated world with an underwater terrain
allows for a more realistic view and handling of the ROV
in the target scenario. We produced a terrain mockup from
a point cloud recorded in underwater trials using a recently
developed surface reconstruction method [7]. The resulting
surface is shown in Figure 9. This model is visibly satisfac-
tory, but coarse enough to create no visible processing load
which would slow down the simulation.

(a) with texture (b) without texture

Fig. 9. Simulated terrain generated using [7]



Fig. 8. Scene Modeling Overview – find a video showing our ROV modeling a simulated scene on https://youtu.be/pcYAgYt65Bc

D. Packaging, Virtualization and Networking

As a tool for packaging, virtualization and easy deploy-
ment, we use Docker [8]. Since usually a robotic system
consists of at least two machines (the onboard computer
and some operator station), Docker facilitates to emulate
the separation of process contexts and data transfer which
occurs in a real distributed system. The important advantage
of packaging each individual system into a Docker container
is that the user can replace real machines by emulated ones
on demand.

In the case of DexROV, four containers have been defined:
– Simulation: ROV physics and sensor/actuator simula-

tion which can be replaced by the real ROV
– Onboard: ROV onboard low-level processing (e.g.

stereo camera data fusion, actuator control)
– Vessel: autonomous capabilities running on the support

vessel (e.g. motion planning, scene modeling)
– Onshore: high-level user interface in a command center

which receives data over satellite link.
In addition to logical separation, inter-machine networking

plays an important role which, especially in case of open-
sea marine robot deployment, usually features delayed and
degraded network connections. We take this into account
prior to deployment using a network simulator [9] based
on netem [10] which allows for dynamic changes of the
following parameters:

– available bandwidth
– delay (with variance)
– package loss percentage
– package corruptness percentage.

These can be set according to the limitations in the
application scenario. In DexROV, for the onboard-vessel
connection, we use settings of 20 MBit/s and 100 ms mean
delay with 10 ms variance. For the satellite connection
between vessel and onshore, a bandwidth of 1 Mbit/s, a
150 ms mean delay with 75 ms variance, a package loss
of 5% and a package corruption of 0.1% are applied which
reflect the properties of the physical connections between the
respective stations.

III. EFFICIENT CONTINUOUS SYSTEM INTEGRATION

Not only in deep-sea offshore operations, but especially
there due to harsh conditions and limited data transmission
capabilities, efficient integration and testing is crucial during
the development of complex systems.

We identify the following advantages of our modularized,
simulation-based approach against conventional monolithic
testing on the complete system:

A. Distributed Deployment

Different people and workgroups can work collaboratively
on the whole system, individually replacing specific simu-
lated components with real ones as per their needs.

This is relevant in integration settings where each group is
to deploy their own components in the processing pipeline.
Preferrably, simulated components are used at first to elim-
inate noise and other issues which typically accrue in the
respective real components. The latter can then gradually
replace the former.

https://youtu.be/pcYAgYt65Bc


B. Interface/Pipeline Testing

Before even involving real hardware, interfaces and pro-
cessing pipelines can already be tested thoroughly using
simulated data.

Especially when hardware interfaces still have to be de-
signed, implemented and tested, developers can use simula-
tion to optimize their processing pipelines and workgroup-
internal as well as external interfaces.

C. Regression/Degradation Testing

Specific constraints (bandwidth, delays, processing power,
environmental conditions, sensor noise) can be taken care of
individually, without influencing each other.

Since for certain components and conditions only a selec-
tion of the mentioned constraints may be occuring, particular
constraint profiles can be defined in order to test each
component.

D. Parallelized Testing

Developers can test their components in parallel and, in
case repetitive testing is necessary, even on parallel instances
of the whole system, on cheap desktops instead of onboard
hardware.

Especially when only one instance of hardware is avail-
able, simulated components may replace this. Using pack-
aging and virtualization tools makes it easy to deploy the
whole system multiple times in parallel, also increasing the
overall computing power and thus reducing testing times.

E. Fault Recovery/Safety Testing

Instead of taking the risk to lose a robot in deep sea, many
cases and margins can be validated already in the simulator
before deployment under real conditions.

Expensive hardware generally poses limitations onto bor-
derline testing which may damage the hardware. Since
simulated components can be restored with no costs and
efforts, hardware may come into play only in final overall-
system verification steps.

IV. DEPLOYMENT SCENARIO

Within the DexROV project, several field trials have
already taken place where we successfully applied the ex-
plained concept in various hybrid configurations. For exam-
ple, we deployed an ROV in the old harbor of Marseille
where limited view, spatial constraints as well as software
components were still under development, did not allow for
full ROV operation. For instance, the scene modeling part
was replaced by the respective simulated components as
shown in Fig. 8.

As a result, the field trial was successfully conducted
considering that components could consume simulated scene
modeling data in order to function properly in the DexROV
framework. Furthermore, we were able to test parts of the
hardware, concretely the thrusters and sonars, while the con-
fined space in the harbor did not allow for safe displacement
and the dirty water rendered stereo perception impossible.
Nevertheless, all components could be tested fully integrated

in the processing pipeline with the constrained ones replaced
by their simulated counterparts.

Another important aspect of this trial was the evaluation of
the communication bandwidth between vessel and onshore
control center. The user interface at the control center con-
sumes live scene data from the ROV. Therefore ensuring
a reliable communication via the satellite link is crucial,
since a reliable supply of real-time scene data has to be
guaranteed for safe operation. Using the simulated scene
modeling components we could generate artificial scene data
with different dimensioning and parameters like occupancy
map resolution.

As a result, we were capable to evaluate the required
communication setup including bandwidth constraints for
the produced scene data under real satellite communication
conditions.

V. RELATED WORK AND FURTHER USES

Within the DexROV project, the pipelines and procedures
described in this paper are used for multiple purposes.

Amongst others, we use the system together with a stereo
camera to perform object recognition like shown in Fig. 8(f).
This can be achieved only using an accurately calibrated
camera system, hence we employ a calibration procedure
[11] in air, prior to starting real-component testing, and
exploit its results in the integrated underwater setting.

In order to subsequently manipulate the valves and levers
on the testing panel, candidates for them can be discovered
first [12] and then the respective components are identi-
fied [13], [14] using for instance methods of our previous
work. Manipulation then eventually takes place using the
ROV controllers as described in Section II-B.

As a high-level addition to the whole perception and
manipulation pipeline, manipulation strategy planning can be
performed for pickable objects found in submarine settings,
like archaeological artifacts or biological samples [15].

VI. CONCLUSION

In the EU project DexROV, we established a continuous
integration and validation approach which can be transferred
to projects which put similar emphasis on hardware-agnostic
testing and distributed development. At the same time, the
ratio of simulated components can be adjusted as per avail-
able resources and criticality of the mission.

Not only for deep-sea, but also other robotic operations
which involve larger groups working with limited hardware
under rough conditions, we propose to generally adopt a
versatile simulation-based validation scheme based on the
conditions described in this paper.

REFERENCES

[1] J. Gancet, P. Weiss, G. Antonelli, M. Pfingsthorn, S. Calinon,
A. Turetta, C. Walen, D. Urbina, S. Govindaraj, P. Letier, X. Martinez,
J. Salini, B. Chemisky, G. Indiveri, G. Casalino, P. di Lillo, E. Simetti,
D. de Palma, A. Birk, T. Fromm, C. Mueller, A. Tanwani, I. Havoutis,
A. Caffaz, and L. Guilpain, “Dexterous Undersea Interventions with
Far Distance Onshore Supervision: the DexROV Project,” in IFAC
Conference on Control Applications in Marine Systems, 2016.



[2] N. Koenig and A. Howard, “Design and Use Paradigms for Gazebo,
An Open-Source Multi-Robot Simulator,” in International Conference
on Intelligent Robots and Systems, 2004.

[3] A. Koubaa, Robot Operating System (ROS): The Complete Reference
(Volume 1), 1st ed. Springer, 2016.

[4] D. De Palma and G. Indiveri, “Underwater vehicle guidance control
design within the DexROV project: preliminary results,” in IFAC
Symposium on Intelligent Autonomous Vehicles, June 2016.

[5] S. Moe, G. Antonelli, A. Teel, K. Pettersen, and J. Schrimpf, “Set-
based Tasks within the Singularity-robust Multiple Task-priority In-
verse Kinematics Framework: General Formulation, Stability Analysis
and Experimental Results,” Frontiers in Robotics and AI, vol. 3, p. 16,
2016.

[6] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013.

[7] T. Fromm, C. Mueller, and A. Birk, “Unsupervised Watertight Mesh
Generation From Noisy Free-Form RGBD Object Models Using
Growing Neural Gas,” Tech. Rep., 2016, https://arxiv.org/abs/1603.
00663.

[8] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux Journal, vol. 2014, no. 239,
Mar. 2014.

[9] M. Pfingsthorn, Docker Networking Simulation, Jacobs University,
2016, https://github.com/maxpfingsthorn/mini-network-simulator.

[10] “Netem,” The Linux Foundation. [Online]. Available: https://wiki.
linuxfoundation.org/networking/netem

[11] T. Luczynski, M. Pfingsthorn, and A. Birk, “The Pinax-model for
accurate and efficient refraction correction of underwater cameras in
flat-pane housings,” Ocean Engineering, vol. 133, pp. 9–22, 2017.

[12] C. A. Mueller and A. Birk, “Hierarchical Graph-Based Discovery
of Non-Primitive-Shaped Objects in Unstructured Environments,” in
International Conference on Robotics and Automation, 2016.

[13] C. A. Mueller, K. Pathak, and A. Birk, “Object Shape Categorization in
RGBD Images using Hierarchical Graph Constellation Models based
on Unsupervisedly Learned Shape Parts described by a Set of Shape
Specificity Levels,” in International Conference on Intelligent Robots
and Systems, 2014.

[14] H. Bülow and A. Birk, “Spectral 6-DOF Registration of Noisy 3D
Range Data with Partial Overlap,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 4, pp. 954–969, 2013.

[15] T. Fromm and A. Birk, “Physics-Based Damage-Aware Manipulation
Strategy Planning Using Scene Dynamics Anticipation,” in Interna-
tional Conference on Intelligent Robots and Systems, 2016.

https://arxiv.org/abs/1603.00663
https://arxiv.org/abs/1603.00663
https://github.com/maxpfingsthorn/mini-network-simulator
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem

