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Abstract— We present a damage-aware planning approach
which determines the best sequence to manipulate a number of
objects in a scene. This works on task-planning level, abstracts
from motion planning and anticipates the dynamics of the scene
using a physics simulation. Instead of avoiding interaction with
the environment, we take unintended motion of other objects
into account and plan manipulation sequences which minimize
the potential damage. Our method can also be used as a
validation measure to judge planned motions for their feasibility
in terms of damage avoidance. We evaluate our approach on
one industrial scenario (autonomous container unloading) and
one retail scenario (shelf replenishment).

I. INTRODUCTION

Since no robot is perfect, just like the humans building
them, autonomous manipulation can be destructive if frag-
ile goods have to be handled. Many compliant grippers,
sophisticated perception systems and manipulation routines
have been developed recently, mostly relying on consequent
obstacle avoidance. This works to a certain degree, but
why not take alteration of the environment into account for
planning instead of bluntly avoiding interaction with it?

We present a manipulation strategy planning approach
which validates and selects the best sequence to remove
or unload a number of objects from a scene while taking
into account possible damage-prone movements of any other
objects. The idea relies on anticipating the dynamics of the
scene using a physics simulation which contains a copy of
the physical scene, including the robot, the environment and
a number of objects to manipulate.

The possibilities are obvious: One the one hand, motion
planning is facilitated because of a less constrained search
space in contrast to regarding all other objects as obstacles.
In some scenes, it may be hard or even impossible to perform
manipulation if no collisions are permitted. On the other
hand, we want to avoid damage to the possibly heavy or
fragile goods as well as the robot itself which may occur if
an object is shifted or dropped unintendedly.

Hence, the goal of our method is to optimize a robot’s
autonomous behavior according to the anticipated dynamics
of the real-life scene. This works without imposing explicit
spatial or logical dependencies between objects, thus the
approach is not tied to a particular application domain.
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(a) Logistics (container unloading) [1]

(b) Supermarket (shelf replenishment) [2]

(c) Underwater (maintenance, archaeology and biology) [3]

Fig. 1. Typical application scenarios for autonomous manipulation

We evaluate our approach on two everyday scenarios
shown in Figure 1: logistics, in the context of the EU project
“Cognitive Robot for Automation of Logistics Processes”
(RobLog) [1] where containers are unloaded autonomously,
and in a supermarket for shelf replenishment [2].

Since our method is generally applicable for robotic ma-
nipulation tasks, underwater environments like used within
the EU project “Effective Dexterous ROV Operations in
Presence of Communication Latencies” (DexROV) [3] may
serve as another application example.

The contribution of our work is:

• a method to plan strategies for the manipulation of a
sequence of objects

• minimizing unintended object movement while dynam-
ically considering the physics of all objects

• including an industrial and a retail application scenario
which show that our approach can be utilized in arbi-
trary usage domains.



II. FOUNDATIONS AND RELATED WORK

A. Physics-Based Motion Planning

Motion planning based on physics simulation has been
investigated in several publications, amongst these, Zickler
and Veloso’s work [4]. Instead of conventionally planning
motions for a robot’s physical degrees of freedom, they
group low-level motions and use them as a single point
in action selection sampling space. As for the environment
representation, Zickler and Veloso state that it is necessary to
define domain-appropriate distance functions between states
of the scene in order to be able to compare them. For their
usage domain of robot soccer and minigolf, the Euclidean
distance serves as a sufficient measure in most cases.

Weitnauer et al. [5] present an approach which works in
a similar way, though only on plain objects and using only
the Euclidean distance as a distance function.

Another usage example of physics-based planning can be
found in [6] and [7] where the authors present methods
of planning grasps through clutter, taking shifting objects
into account and explicitly manipulating them. This is rather
similar to our approach, though not with the intention to
find an efficient manipulation order, but to clear manipulation
paths from obstructing objects.

Before using one of these approaches, the object to ma-
nipulate would have to be selected by some algorithm or
a human operator. On the contrary, our method automates
exactly this scenario where not only physics-based manip-
ulation planning takes place, but also autonomous object
selection to plan manipulation sequences on a high level.

In addition, in the scenarios intended to be tackled with
our approach, intentionally pushing objects aside with the
gripper poses an additional risk of damaging the goods
and even the gripper. For this reason, we want to limit
the movement of any other than the object to manipulate
as much as possible. Our approach takes care of this by
penalizing any movement of a passive object, i.e. an object
which is not subject to intended manipulation at the moment.
Therefore, intentional as well as unintentional damage-prone
manipulation of passive objects is avoided.

B. Manipulation Strategy Planning

In contrast to the methods described so far, our approach
does not aim on planning motions, but high-level behaviors
with the help of a physics simulation. This means that,
instead of giving an explicit trajectory, our method will a)
validate whether an ongoing manipulation is likely to be
successful or b) plan a sequence of manipulation actions to
perform in the desired scenario. Therefore, our possible ap-
plication scenarios are separated into Manipulation Outcome
Prediction and Manipulation Sequence Planning which will
be introduced in the following.

a) Manipulation Outcome Prediction: Covered by this
term, several methods have shown different ideas and sce-
narios. Unfortunately, most of the existing work focuses
on predicting the outcome of motions instead of behaviors,
like Pastor et al.’s work [8] where robot parameters like

joint positions and velocities are continuously monitored and
verified whether they lie within a learned envelope. Haidu et
al. [9] use a similar technique, also to learn motoric skills.

In contrast to these works, Rockel et al. [10] present an
interesting idea of predicting task success on the basis of mo-
tion of the manipulated objects. Concretely, their application
includes a robot which maximizes its speed moving around in
a scene, but without losing the balance of an object which sits
on its base. This works on the basis of semantic predicates,
but with hand-crafted features which describe if the object
shakes or topples and which cannot easily be employed on
a different scenario.

Akhtar et al. [11] also use semantic predicates to reason
about success of a manipulation action. They present a
Machine Learning algorithm which is able to predict whether
an object released on top of another will behave as expected.
This detection of external faults can predict the behavior of
a concrete action based on a simulated training set, but again
uses hand-crafted predicates which only cover this particular
action. Our approach, on the contrary, aims on covering
implicit manipulation of passive objects as well, independent
of which exact manipulation is performed on the scene.

b) Manipulation Sequence Planning: In order to ma-
nipulate objects which are placed currently unreachable be-
hind others, Stilman et al. [12] use a sampling-based planner
to move away the blocking objects.

Okada et al. [13] present a similar simple, but effective
example for strategy planning for a humanoid robot where
obstacles are considered as planning goals and subsequently
moved away from the desired walking path. Their goal is to
enable robots to implicitly perform necessary manipulation
actions, even if these actions were not part of the original
task plan. This is similar to our recent work evaluated in
a different scenario [2], but different to what we present in
this work. Here we use a dynamics simulation to evaluate the
feasibility of a manipulation action, taking unintended side
effects into account in addition to static spatial knowledge.

III. PREREQUISITES

Simulating the behavior of robots and objects requires both
high accuracy and some abstractions since not every detail in
robot and object properties can easily be modeled. Since our
approach is intended to work in complex scenarios based on
perception systems for object recognition and real robots for
motion execution, we need to be sure that these work error-
free and take care of the respective noise where it occurs.
Therefore, we assume object models and environment to be
given as well as the state of the robot.

A. Simulation Scene Composition

In order to build the scene configuration used in the
physics simulation, we first recognize and localize all objects
in the scene using our perception system [1] [14]. This
system includes a pipeline of several segmentation and
filtering steps before it executes diverse recognition modules,
including a feature-based textured object recognition module
[15] and a graph-based shape model recognition module [16].



B. Motion Planning, Grasp Planning and Execution

After all objects have been perceived, the respective
grasps need to be planned, evaluated and finally executed by
the robot. The way of determining grasping configurations
strongly depends on the objects and gripper used in the
scenario since different object sizes and structure demand
for different gripper sizes and amounts of dexterity. Since
the focus in this work does not lie on grasp and motion
planning and our method is supposed to be re-used in
different scenarios, we use simple grasping configurations
around the principal object axes.

The physics simulation uses a kinematics and dynamics
model of the robot which has been developed together with
the respective simulated controllers. For the supermarket
scenario, we use the standard PR2 simulation model. The
eventual generation of the motion trajectories can be per-
formed, for example, by using MoveIt!.

IV. MANIPULATION COST FUNCTIONS

A. Motivation

The usage of cost functions to find the most suitable
and reasonable solution to a planning problem has been
common practice for a long time (e.g. in [13], [17]) to be
able to evaluate the effects of a particular action. In order
to apply this method to a specific planning problem, domain
knowledge has to come into play which accounts for the
optimization target of the respective problem.

Since our approach aims on reducing unintended motions
of passive objects, i.e. objects which are not subject to
intended manipulation at the moment, we need to consider
cost functions which cover spatial modifications in the scene.

B. Terminology

For all of the following definitions, we use O as the set
of objects present in the scene, α ∈ O as the active object
(which will be manipulated), Φ = O\α as the set of passive
objects (which will not be manipulated) and φ ∈ Φ as one
member of this set.

C. Pose-Based Cost Functions

The following two simple cost functions are based on
object poses and allow for a quick validation without a lot
of processing, but may not be predictive-efficient enough.

a) Maximum Pose Shift cp: describes the maximum
Euclidean distance between object poses:

cp = max
φ∈Φ
‖pt+1(φ)− pt(φ)‖ (1)

where pt(φ) ∈ R3 is the position of passive object φ before
(at time t) and pt+1(φ) after running the simulation step
(at time t + 1). This is simple and easy to compute, but
smoothes out non-straight motion paths and thus does not
describe changes in an object’s direction of movement.

(a) initial configuration (b) final configuration

(c) Pose Shift (dashed line), Path Length (dotted
line) and Swept Convex Volume (yellow)

Fig. 2. Visualization of the Swept Convex Volume compared to the Pose
Shift and Path Length covered by a passive object during manipulation.
When the right box was pulled out by the robot, the cylindrical container
fell down and rolled away, causing costs like shown.

b) Maximum Path Length cl: is the maximum length
of the path any object’s centroid traveled during simulation:

cl = max
φ∈Φ

n∑
i=1

‖pi(φ)− pi−1(φ)‖ (2)

where pi(φ) ∈ R3 is a position of passive object φ during
the simulation step (= between time steps t and t+ 1) and n
is the number of positions covered during simulation. This
takes into account different directions of movement, but not
a possible spin the object may have been exposed to.

D. Volume-Based Cost Functions

The following cost functions are based on the volume of
the objects instead of their pose, thus considering complex
motion paths as well as changes of movement direction and
spin.

a) Maximum Swept Convex Volume cv: Swept Volume
estimations can be used for collision detection [18] as well as
space occupancy calculation for automation and production
purposes [19]. For a mathematical formulation see the survey
of Abdel-Malek et al. [20].

The object’s surface mesh is used as the generator which
follows a trajectory (a set of poses covered while moving
during simulation runtime) and creates the swept volume (the
outer boundary of the object during its motion). This can be
considered a voxel-based variant of [20] which is widely used
in applications where generator and trajectory are discrete.

In most applications, this volume basically represents a
concave hull around all points in space which the object
ever touched. However, this takes a lot of effort to compute
[19] and, since the concave hull of a number of points is not
generally well-defined, may raise ambiguities for different
kinds of objects. As a remedy, we simplified the original
Swept Volume approach by replacing the concave with the
convex hull, normalized by object volume, which is easy
to compute and well-defined, and call the result the Swept



Convex Volume. Figure 2 shows a visualization of the Swept
Convex Volume of a moving object compared to its Pose
Shift and Path Length.

Since we relate all objects in a scene, we take the
Maximum Swept Convex Volume cv which is the maximum
over all Swept Convex Volumes of the scene objects. It is
determined as

cv = max
φ∈Φ

V (φ) (3)

where V (φ) is the Swept Convex Volume of the respective
object φ ∈ Φ as computed in Algorithm 1.

Algorithm 1 Swept Convex Volume calculation
1: input: object meshM(φ), object poses p0..n(φ) covered

during simulation
2: create point cloud C(φ) from M(φ) at p0(φ)
3: for all pi(φ) do
4: Ci(φ)← C(φ) transformed from p0(φ) to pi(φ)
5: C(φ)← C(φ) ∪ Ci(φ)
6: end for
7: H(φ)← convhull(C(φ))
8: H0(φ)← convhull(C0(φ))
9: V (φ)← volume(H(φ)) / volume(H0(φ))

10: output: Swept Convex Volume V (φ)

b) Maximum Weighted Swept Convex Volume cw: Since
the desired usage of our method puts special focus on fragile
and vulnerable goods, we propose an additional cost function
based on cv , but with additional weights for each of the 6-
D axes. These weights can be adapted to the domain, e.g.
to punish vertically dropping objects like when they fall
off a shelf or out of a container. Additionally, one could
think of applications like objects running on a conveyor
where a lateral translation could push the goods off the belt,
thus stopping them to be conveyed. Rotational weights may
be employed in a domain dealing with objects which spill
when they are turned, for example liquid containers or open
underwater objects like amphoras and treasure chests.

As for the implementation of such weights, in Algorithm 1
we need to replace pi(φ) in Line 4 with the weighted pwi (φ):

pwi (φ) = p0(φ) + diag(w) · (pi(φ)− p0(φ)) (4)

where w =
[
wx wy wz wϕ wθ wψ

]ᵀ
are domain-

dependent weights for each of the components of the 6-D
object pose.

V. MANIPULATION OUTCOME PREDICTION

Scene Dynamics Anticipation as a validation method for
planned actions can be used in runtime-restricted scenarios
and scenarios where another planner has already determined
which objects to manipulate in which order. One example
for this is the planner presented by Mojtahedzadeh et al. [21]
which uses static equilibrium calculations to find objects that
support each other, hence it will eventually select objects first
which do not support any other object.

Implicitly, our approach will usually determine similar
manipulation sequences, but in addition considers dynamic

events occuring during the manipulation for which Mojta-
hedzadeh et al.’s approach is not equipped. Consequently,
using our method for validating plans on dynamic scenarios
can be seen as an addition and enrichment to another planner.

Algorithm 2 shows how we perform Outcome Prediction
using Scene Dynamics Anticipation with the definitions and
cost functions given in the previous sections.

Algorithm 2 Manipulation Outcome Prediction
1: input: scene objects O, active object α ∈ O
2: spawn all objects O in simulation
3: plan approach Tα1 and extract Tα2 trajectory
4: move simulated robot on Tα1
5: grasp active object α
6: move simulated robot on Tα2
7: release active object α
8: c← manipulation costs (→ Section IV)
9: output: manipulation costs c

One drawback of using Scene Dynamics Anticipation as
a validation method, however, is the fact that it outputs
the manipulation costs for the given scene configuration,
but classification between positively and negatively validated
actions has to be performed manually via a threshold.

This is a common problem for Outcome Prediction meth-
ods in general, also for Rockel et al.’s approach [10] where
thresholds are defined manually for which an object is
considered to be toppling. Another example is [8] where the
authors perform statistical tests on whether a planned motion
lies within a learned envelope. Whenever such an approach
is deployed on a new scenario, these parameters have to be
set accordingly.

We empirically determined the manipulation cost thresh-
old based on satisfactory operation of our method. For
the logistics scenario, for instance, where the container is
low above ground and provides lots of operation space,
a threshold of cw = 2.0 gives satisfactory results. The
implicit lower limit for this value is cw = 1.0 which equals
the volume of the object. Since jitter can always occur
in simulation and small pushes usually do not cause any
damage, setting this value too close to 1.0 will prevent the
algorithm from positively evaluating any configuration. On
the other hand, too loose settings should be avoided.

VI. MANIPULATION SEQUENCE PLANNING

In addition to Manipulation Outcome Prediction, we now
want to introduce a way to include Scene Dynamics Antici-
pation into planning a sequence of manipulation actions.

Instead of serving as a validation tool only, our method
is able to plan a manipulation sequence which considers
side-effects of moving objects. In addition, obstacle-avoiding
motion planning may fail in certain scenarios. But since we
explicitly allow for moving passive objects during manipu-
lation, though trying to minimize it, our high-level planner
may still succeed in finding a viable manipulation sequence.

In our previous work [1], we have sketched the difficulties
and pitfalls of motion planning in heavily confined spaces,
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Fig. 3. Example search tree (other branches cropped for better visibility)
– each node shows its initial configuration, i.e. before manipulation

Algorithm 3 Search Tree Generation for Sequence Planning
1: initialize search tree S0 ← ∅
2: initialize set of objects O0 with current scene
3: procedure CREATENODE(Si, Oi)
4: if |Oi| ≤ 1, i.e. this is a leaf node then
5: return
6: else
7: create new tree node Ni containing object set Oi
8: Si+1 ← Si ∪Ni
9: determine new active object αi ∈ Oi

10: Oi+1 ← Oi \ αi
11: return CREATENODE(Si+1, Oi+1)
12: end if
13: end procedure
14: output: filled search tree S

i.e. when all passive objects are considered as obstacles. This
may even lead to a dead end in manipulating any remaining
object if the constraints are too tight. Manipulation Sequence
Planning using Scene Dynamics Anticipation, on the other
hand, allows for passive objects to move and takes their
motion into account as a feature, thus getting stuck in such
a case is less likely.

A. Planning Procedure

Our method uses a search tree built from all possible ob-
jects configurations which can occur while manipulating all
objects in the scene, see the example in Figure 3. The initial
configuration is shown as the tree root, on the top, while
further down the tree one object has been unloaded in each
node. The images show the respective initial configuration
for these nodes, before performing the manipulation step.

While traversing the tree further down, unintended motion
and high costs are caused for the pink container which falls
off the blue box when this one is manipulated. The leaves
merely contain one remaining object which can directly be
manipulated disregarding the scene physics since no passive
objects are left.

Algorithm 3 shows how to generate the search tree for a
scene given the initial object configuration. After the tree has
been filled, traversing it works like shown in Algorithm 4,
using a depth-first search-like technique and exploiting our
Manipulation Outcome Prediction method (Algorithm 2).

Algorithm 4 Manipulation Sequence Planning
1: input: scene objects O, search tree S generated from O

(→ Algorithm 3)
2: for all nodes Ni ∈ S do
3: perform Outcome Prediction (→ Algorithm 2)
4: end for
5: for all leaf nodes N leaf

j ∈ S do
6: cj ← summed-up costs of N leaf

j ’s parents
7: cmin ← min(cmin, cj)
8: end for
9: output: node Nj with lowest manipulation costs cmin

As for the cost functions used for calculating the node
costs, all those introduced in Section IV can in principle
be used interchangeably here. Since one of the main topics
of this paper is damage avoidance, however, we prefer the
Maximum Weighted Swept Convex Volume cw because it
takes into account a) complex motion paths and b) change
of movement direction and spin. Both of these factors are
a crucial ingredient to avoid objects toppling or dropping
under all circumstances.

In order to use A∗ or a similar search algorithm for our
problem we would need to design an admissible heuristic.
However, with the cost function used in our method it is not
possible to define such a heuristic because the distance (in
costs) to the target configuration cannot be determined.

B. Efficiency Considerations
In contrast to A∗ or other common search methods

like discretized Rapidly-Exploring Random Trees (RRT) or
Rapidly-Exploring Random Leafy Trees (RRLT) [22], our
scenario causes more of an efficiency issue in estimating
the node costs than in the search itself. Traversing the tree
taken by itself is rather trivial and fast because the number
of nodes which are handled in our search trees can be
processed rapidly on modern machines. Thus, the efficient
search problem is overshaded by a heuristic cost estimation
problem during the processing of each individual node which
is prominent and crucial to solve in minimal time.

The worst-case tree size for a number of objects n,
constructed from all possible permutations of the object set
like in Algorithm 3, is

n∑
i=1

n!

i!
= n! +

n!

2
+ ...+

n!

(n− 1)!
+ 1 (5)

where n!
i! is the number of objects for the respective tree

level i, i = 1 representing the bottom level (i.e. leaves) and
i = n the top level (i.e. root); see the example in Figure 3.

This number grows fast with a rising number of objects,
taking along the cost estimation problem with the same
speed. A possible remedy for this is to partition the scene
into piles of 4-5 objects and plan a manipulation sequence for
each of these piles individually. However, how to optimize
these partitions still remains an open research question.

In addition to not using more than 4-5 objects at a time,
we cut off as many branches of the search tree as possible in



(a) Scene 1 (b) Scene 2 (c) Scene 3 (d) Scene 4

Fig. 4. Experimental scenes used for evaluating our method

which ultimately there is no possibility to present the optimal
solution. In the following, we will present several ideas to
reduce the tree size as far as possible. In Section VII we
show that the tree size in a typical scenario can be reduced
to as low as 48.7% using these measures.

1) Implicit Search Tree Pruning: As we will show by an
empiric consideration in the Results section, in every scene
there is a number of configurations which implicitly cannot
be simulated. Usual reasons for this are that approaching
an object may push a passive object which, in turn, moves
the active object away by a significant distance. In this
case, the active object will end up unreachable for the
planned manipulation action. Additionally, sometimes no
feasible grasping configuration can be found without the
robot colliding with the environment (container, shelf, etc.).
Since motion planning is out of scope of our work, we have
to skip simulating the respective configuration in this case
and impose infinite costs.

2) Explicit Search Tree Pruning: In addition to the im-
plicit reasons given above, the used depth-first search allows
for cropping tree branches: After simulating a configuration,
if the accumulated costs in the current branch exceed the
total costs of any already computed goal sequence (i.e. a
tree leaf), we stop exploring the current branch.

3) Re-Use of Similar Configurations: Another way to
reduce computational load, in addition to pruning tree
branches, is to re-use similar configurations which occured
before somewhere else in the tree. Before running the
simulation, we compare the current configuration to each
one which was simulated before, anywhere in the tree, for
similarity of objects and their poses. If there is a similar
configuration, we re-use this node and the whole child tree
of the node (if any) without having to simulate any of them.

Generally speaking, apart from the mentioned measures
to reduce computational complexity, the runtimes of our
method strongly depend on the used simulator. Moreover,
regarding the total runtime of one sequence planning run,
motion planning and execution take the biggest part of time
which is very robot and application-specific.

Fortunately, our method is well-suited for parallelization
because all nodes on the same tree level can be simulated
in parallel since their configurations do not depend on each
other. As the number of objects in the scene and, with it, the
number of tree levels rises, the limit for the speedup achieved
by parallelization is the number of used threads / CPU cores.

C. Open-Loop vs. Closed-Loop Planning

The method we propose basically allows for open-loop
planning, where the manipulation sequence is planned once
and then executed without further anticipation of scene dy-
namics, or closed-loop, where the whole process is repeated
from the beginning after manipulation of any object. Re-
planning the entire remaining manipulation sequence after
each perception/manipulation cycle in a closed loop has
the advantage of covering object movement which stems
from to inaccurate physics simulation or other, external
disturbances in the scene. However, time constraints may
not allow for running Manipulation Sequence Planning after
each manipulation cycle, so using the results only as an initial
plan is a viable alternative.

VII. APPLICATIONS AND EXPERIMENTAL RESULTS

In this section, we want to evaluate our method applied
on two of the described practical scenarios. Typical scenes
for both are shown in Figure 1.

As for the first scenario, logistics is a field where many
different goods have to be handled, some of which are heavy,
bulky, fragile or otherwise damage-prone. Our previous
work on unloading shipping containers [1] provides an ideal
application in this respect, so we have modeled the robot,
container and objects from this scenario as our first example.

Secondly, domestic and retail robotics provide another
playground for manipulation strategy planning, thus the
supermarket scenario of [2] will serve as the second example.

A. Prerequisites

For evaluating our method, we take several modalities as
granted and thus abstract from them because they fall out of
the scope of this work.

First of all, since the perception and grasping accuracy of
our previous work have been validated extensively already
in [1], [14], [15] and [16], we are not going into detail on
these measures anymore.

Abstracting from details in the object models is necessary
as well because we would like to show the general concept
of our method in this work. Although it is desirable to obtain
simulation models as close as possible to the real objects, this
constitutes an own branch of research. Because of this, we
use a simplified representation of the rigid objects from our
real scenarios (see Figure 1) like shown in Figure 4. For the
same reason, we do not employ complex grasping techniques
here, but instead generate simple grasping configurations
around the principal axes.
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(a) Scene 1
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(b) Scene 2
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(c) Scene 3
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(d) Scene 4

Fig. 5. Frequencies of first-ranked manipulation sequences selected by our method

Although we present a general approach which is not
limited to scenarios where damage-awareness is the main
focus, we want to emphasize the importance of this factor
in our applications. Thus, we use the Maximum Weighted
Swept Convex Volume cw as a cost function which explicitly
penalizes covered space. The weights w for cw we set on

w =
[
1.0 1.0 2.0 1.0 1.0 1.0

]ᵀ
which puts increased importance on damage-prone vertical
motion. This is desired especially in scenarios like a super-
market where objects would break if dropped from a shelf.

B. Experimental Scenes

We want to show how our method works by running it
many times on different scenes and comparing the final ma-
nipulation sequences. Additionally, we show what happens to
the search tree which can be heavily pruned during traversal.

a) Logistics: Scenes 1 and 2 in Figure 4 show typical
scenarios encountered in RobLog [1] where Scene 2 is the
more challenging one due to the goods supporting each other.
Hence, once any of the objects is manipulated it is likely that
one of the others will move as well.

b) Supermarket: The tall shelf, along with the cans
which may roll away if dropped, is a hostile area for any
damage-prone product and thus a good example for our
method. The tipped-over items in Scene 4 occur frequently
in a supermarket where customers leave the shelf like this,
products coming to rest partly on top of each other.

C. Manipulation Sequence Planning Results

We ran our method 25 times each on the two scenes per
application, resulting in a total of 100 runs. Figure 5 shows
a histogram of how often a particular manipulation sequence
was selected for a particular scene of Figure 4.

Numerical results are shown in Table I with their means
(µ) and standard deviations (σ) for the following criteria:
• mean first-ranked costs per node: mean over 25 runs of

the mean costs per object imposed on the manipulation
sequence selected by Algorithm 4

• mean second-ranked costs per node: mean over 25 runs
of the mean costs per object imposed on the second-best
manipulation sequence

• pruned tree nodes: percentage of nodes pruned from
the tree, resulting in a similar reduction in runtime, and
composed of the following sub-criteria:

– known subtree: a node shares its object configura-
tion and poses with a previously processed node,
thus the costs were copied without re-simulating

– costs exceed existing sequence: a solution is exist-
ing already which has lower costs than the costs
accumulated so far in this branch

– active object moved: the active object was pushed
away during approach, ending up unreachable

– object out of workspace: an object fell out of
the workspace (container/shelf), causing maximum
damage and ending up unreachable for the robot

– planning failure: no motion plan was found for the
active object, e.g. because it was pushed away too
far in a parent node

• nodes with significant movement: percentage of nodes
which were not pruned from the tree and reported sig-
nificant costs higher than a manually defined threshold

D. Discussion

The results in Figure 5 show that, over many runs, of
the possible number of sequences only a small selection is
considered as best. The fact that not the same sequence is
reported for each run, but there is obviously some noise in
the selection stems mostly from the used motion planning
techniques. These rely on random trees and thus deliver
noisy results for similar inputs. This way, different grasping
configurations are selected for the same object configuration,
resulting in different motions even if the scene looks similar.

Nevertheless, the resulting manipulation sequences are
valid and reasonable in a way that they comply with the
intuitive sequence a human would use to clear the con-
tainer/shelf: unloading the objects first which do not physi-
cally support others. So, even if there is some distribution of
the finally selected manipulation sequence due to reasons that
cannot be influenced by our planning approach, our method
succeeds in selecting reasonable solutions for all scenes.

The results show that generally a major ratio of pruned
nodes results from comparing the current costs to the already
planned sequences. Therefore, this is one of the most useful
tricks we use to reduce computational load.

In Scene 3, items falling off the shelf are the major reason
for tree pruning: 31.9% of nodes featured an object which
moved out of the robot’s workspace. The robot used in
the logistics scenario has a big workspace in all directions,
additionally, the container provides physical limits on three
sides, thus this did not happen for Scenes 1 and 2.



TABLE I
NUMERICAL RESULTS

Scene 1 2 3 4 Total
µ σ µ σ µ σ µ σ µ σ

mean first-ranked costs per node 1.008 0.008 1.208 0.074 1.349 0.359 1.975 0.321 1.382 0.435
mean second-ranked costs per node 1.337 0.868 1.429 0.326 1.700 1.728 3.764 7.393 2.051 3.878
pruned tree nodes 34.8% 50.4% 58.3% 61.9% 51.3%
- known subtree 7.5% 4.8% 2.6% 2.5% 1.2% 2.2% 0.0% 0.0% 2.8% 4.1%
- costs exceed existing sequence 16.5% 8.3% 18.3% 5.3% 19.3% 14.7% 41.0% 18.1% 23.8% 16.0%
- active object moved 5.8% 5.6% 25.2% 13.5% 4.2% 11.6% 8.1% 9.2% 10.9% 13.2%
- object out of workspace 0.0% 0.0% 0.0% 0.0% 31.9% 15.7% 7.0% 9.6% 9.6% 15.9%
- planning failure 5.0% 9.6% 4.3% 8.4% 1.7% 3.1% 5.8% 10.9% 4.2% 8.6%
for reference: non-pruned nodes with
significant movement (cw > 2.0) 13.8% 3.0% 11.9% 4.9% 14.8% 4.3% 18.9% 5.1% 14.9% 5.0%

The high values for the standard deviations of pruned
nodes result from all the children of such a node automat-
ically being cut off. This way, any disturbance propagates
down through the tree and may affect many nodes at the
same time when it happens in a high-level node.

VIII. CONCLUSION

We presented a method to plan manipulation sequences for
a number of objects, depending on their physical behavior.
This enables autonomous robots to anticipate an optimal
manipulation order to avoid potential damage by taking into
account unintended movement of other objects.

Our approach presents merely a first attempt to solve a
complex problem. However, since the planning technique
is abstract, given the scene was perceived correctly, it is
universally usable on any autonomous robot scenario.

We evaluated our approach on two everyday scenarios
showing good results for scenes of different physical com-
plexity and on different types of robots.
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