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Abstract: Deep-sea robotic operations require a high level of safety, efficiency and reliability.
In the development stage of such systems, measures have to be taken into account to validate
performance in order to assess the achievement of these requirements. In the context of
continuous system integration, we proposed a simulation-in-the-loop framework focusing on
the mitigation of discrepancies between simulation and real-world conditions.
While in our previous work we mainly targeted a high-fidelity simulation that embeds spatial
conditions from recorded real-world data, this work emphasizes environmental conditions. We
propose an optimization cycle which allows to enhance the fidelity of simulated underwater
camera images in a backward optimization step and to enhance real-world images with knowledge
available in simulation in a forward optimization step. Experimental results show that the
proposed methodology optimized both simulation and real imagery, and subsequently ensures
high fidelity.
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robot perception, parameter optimization, self-optimizing systems.

1. INTRODUCTION

In recent years, deep-sea research and commercial activ-
ities have been profiting from the rapid developments on
Unmanned Underwater Vehicle (UUV) capabilities which
can be used for inspection, mapping. manipulation and
recovery tasks. Especially in inaccessible areas which may
be hazardous to humans UUV are deployed in user-guided,
semi-autonomous and fully autonomous missions in order
to avoid dangerous incidents for human divers.

However, the development and continuous evaluation of
such underwater robotic systems typically requires a large
amount of manpower and equipment to deploy, operate,
and retrieve the robot offshore. This rapidly increases
the effort and cost of each development cycle. Specialized
testing and deployment strategies are required because
effort and costs in case of failure are higher by several
orders of magnitude than in ground robotics, for example,
when a UUV malfunctions in deep sea and cannot be
retrieved anymore.

Consequently, efficient strategies have to be incorporated
to validate effectiveness, robustness and reliability of the
developed capabilities. Therefore, we recently presented
a simulation in the loop (SIL) methodology (see Fig. 1)
that uses a simulator for underwater robotic activities and
integrates parts of the development stack with real-world
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Fig. 1. Simulation in the loop in a perception task appli-
cation (valve and lever pose estimation, Mueller et al.
(2018)) leading to an optimization cycle as presented
in the current work.

data recorded from field trials, see Mueller et al. (2018).
However, in order to achieve high-accuracy results in terms
of realisticness when using the simulation, its parameters
have to be optimized prior to deployment with respect to
fidelity of real-world sensor data and behavior.

Hence, in this work we propose an approach for high-
fidelity simulation of underwater environmental conditions
such as degree of visibility captured through an ROV-
onboard camera. These conditions can be adapted to
the current mission on the fly and allow for integration
testing and performance evaluation of perception-related
algorithms and methods. Consequently, we provide an
example use case of deep-sea camera image enhancement
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which profits from this high-fidelity simulation and shows
the applicability of our method.

2. SIMULATION IN THE LOOP

In the context of the EU-funded research project DexROV
(Effective Dexterous ROV Operations in Presence of Com-
munication Latencies Gancet et al. (2016)), in our pre-
vious work Fromm et al. (2017) we proposed a versatile
integration and validation architecture that allows for
pre-deployment testing using simulated and real system
components besides each other in a seamless way. That
work focused on the continuous system integration and
deployment of a fully integrated system that may contain
simulated components due to their developmental stage.

In our recent work in Mueller et al. (2018), however, we
presented a simulation in the loop (SIL) methodology (see
Fig. 1) which allows for extensive system benchmarking.
Hence, our particular focus is set on closing the discrepancy
between simulated and real-world data by augmenting
simulation with feedback extracted from collected real-
world field trial data. Such feedback may consist of specific
environmental or spatial conditions like degradation of
visibility due to haze and low illumination, as well as
object pose estimation and robot localization events.

As a result, the proposed method does not only provide
the benefits of continuous system integration described
in Fromm et al. (2017) like distributed deployment, inter-
face/pipeline testing, regression/degradation testing, paral-
lelized testing or fault recovery/safety testing. It also pro-
vides an augmented virtual environment reflecting condi-
tions from real-world field trials that allows to thoroughly
and concurrently investigate, compare, and benchmark be-
haviors of system components under both real, simulated,
and hybrid conditions.

Initially, in Mueller et al. (2018), our focus was on spatial
conditions such as object locations, for instance of the
ROV and an artificial testing panel used for evaluating
autonomous deep-sea manipulation (see Figure 1). In this
paper, however, we particularly emphasize environmental
conditions, specifically the enhancement of visual fidelity
between real-world and simulated data by adapting visual
conditions in simulation to those found in real data (see
Section 3).

Given this framework which provides spatial as well as
environmental fidelity in both the simulation and the real-
world domain, we go a further step ahead by closing the
loop with enhancing real camera images with knowledge
available in simulation (see Section 4).

In the literature, the term simulation in the loop has
previously been used in different, inconsistent contexts, for
instance, with simulation as a sampling and verification
step within motion planning approaches (Heckman et al.,
2015). Another example is its use as a synonym for con-
tinuous system integration as introduced in Fromm et al.
(2017), e.g. by Iivari and Ronkainen (2015). Other authors
even use this term to merely indicate the substitution of
real hardware with a simulated representation thereof, like
in Cichon et al. (2016).

parameter description

aH attenuation factor (hue)
aS attenuation factor (saturation)
aV attenuation factor (value)
bH background intensity (hue)
bS background intensity (saturation)
bV background intensity (value)
ρF fog density

Table 1. Camera simulation parameters ad-
justed in the process of our method

For practitioners, our closed-loop SIL methodology is use-
ful two-fold: it firstly allows for backward optimization of
the simulation environment using real-world data to create
a high-fidelity representation of the conditions founds in
the field. Automatic adaptation to the respective con-
dition of a mission can be performed during the field
trials with the method explained in Section 3, the re-
sulting representation can be used for efficient continu-
ous system integration. Secondly, it provides the ability
to perform forward optimization of real-world perception
and autonomous behavior algorithms using the additional
information provided by the simulation with synchronized
spatial and environmental conditions.

3. UNDERWATER CAMERA SIMULATION
FIDELITY ENHANCEMENT

3.1 Realistic Underwater Camera Simulation

In order to achieve environment conditions in simulated
underwater camera images which are close to reality, we
primarily adapt the light behavior to replicate color at-
tenuation. The simulated stereo camera applies an expo-
nential attenuation on the pixel intensity as described in
Marcusso et al. (2016):

i∗c = ice
−zac + (1− e−zac)bc ∀c ∈ {R,G,B} (1)

where ic and bc correspond to the pixel and background
intensity value for color channel c, ac is a color-dependent
attenuation factor, and i∗c is the attenuated color value.
The attenuation depends on the distance z to the object
projected on the camera pixel, which is extracted directly
from the simulator depth-camera plugin.

Additionally, because deep-sea images are usually prone to
light scattering, we integrated the fog functionality present
in the used simulator, Gazebo (Koenig and Howard, 2004),
with its density as another degree of freedom to simulate
this behavior. All this functionality has been implemented
using the Gazebo camera plugin to be usable in the given
setup.

3.2 Parameters to optimize

In order to provide high-fidelity camera images in sim-
ulation whose environmental conditions correspond with
real-world data, we use a flexible camera model which
exposes a set of parameters adjustable for this purpose.
The selected camera simulation parameters to optimize in
our method are shown in Table 1. In this work, we present
an approach to optimize this 7-dimensional parameter set
in an unsupervised manner using specific optimization
criteria described in the next subsection.



3.3 Image Quality Optimization Criteria

As a criterion for image similarity, many different measures
exist. Our SIL landmark is an artificial object with defined
features (see DexROV panel in Fig. 2) which facilitates a
highly accurate pose estimation of the object even under
challenging conditions as described in Mueller et al. (2018).
This object is exploited as reference for optimization
purposes and therefore we assume to be visible in the
real-world images, otherwise no visual reasoning would be
feasible.

Images captured from this object provide visual features
which are suitable to be reflected in the grayscale-based
Feature Similarity Index FSIM (Zhang et al., 2011) and its
color extension FSIMc. Therefore, we take the latter as the
first image quality optimization criterion θ1 to determine
the similarity between the real-world ground truth image
Ig and the simulated image Ii for the respective agent’s
parameter set ai so that

θ1(ai) = FSIMc(Ig, Ii). (2)

Additionally, color information plays an important role
in underwater imaging as the parameter set in Table 1
indicates. Hence, we create three single-channel histograms
on the HSV (Hue, Saturation, Value) color space of the
real-world ground truth Ig and simulated image Ii and
calculate mean of their Bhattacharyya distances dB (Bhat-
tacharyya, 1943). However, spatial information must not
be neglected completely in this process since, due to the
nature of simulation, many uniformly-colored areas are
present in the image. Whole-image color histograms may
lead to overfitting on the predominant color, so instead we
divide the image 10× 10 regions of interest and calculate
the mean of their single-channel histogram distances dB .
The median of all regions, which is more resistant to outlier
regions, is then taken as the second optimization measure:

θ2(ai) = median
r∈R

(

mean
c∈C

(dB(hc(Ig,r), hc(Ii,r)))

)

(3)

where R is the set of regions of interest in an image,
C ⊆ {H,S, V } are the color channels to regard and
hc(·) is the histogram of color channel c. HSV is more
invariant than RGB to color dependencies, so the user can
decide whether during optimization they want to set focus
on color or luminance for their application by using the
respective channels only. In our baseline application, we
used all three channels as in our Experimental Results
section.

3.4 Particle Swarm Optimization

In our previous work (Mueller et al., 2018), we used hand-
crafted values for the mentioned parameters to achieve
satisfactory results. Manual parameter tuning may be
difficult, however, depending on on their number and
range. Moreover, parameters can form strong relationships
between each other.

Since the parameter optimization problem presented here
is discontinuous, all optimization methods relying on a
continuous function describing the problem will fail. As
for pattern search-based methods, the brute-force Grid
Search is one of the most trivial, but least efficient ones.

input: parameter space A, maximum number of itera-
tions tmax, real image Ig, color channels C ⊆ {H,S, V }

1: initialize all agents ai ∈ A randomly
2: initialize globally optimal agent aopt ← a0
3: t← 0
4: while t < tmax do
5: for all ai ∈ A do
6: generate simulated camera image Ii(ai)
7: θ1(ai)← FSIMc(Ig, Ii)
8: θ2(ai)← median

r∈R
(mean

c∈C
(dB(hc(Ig,r), hc(Ii,r))))

9: θ(ai)← (θ1(ai) + θ2(ai))/2
10: if θ(ai) > θ(aopt) then
11: update optimal agent aopt ← ai
12: end if
13: end for
14: update all agents’ parameter sets to move

the swarm towards the current optimum
15: t← t+ 1
16: end while
output: globally optimal agent aopt

Algorithm 1. Particle Swarm Optimization

Instead, we utilize Particle Swarm Optimization (PSO) 1

(Kennedy and Eberhart, 1995).

PSO can be used without assumptions about the data to
optimize. As an input, it is able to deal with a number of
numerical parameters in arbitrary ranges (for our case, see
Table 1) and needs an evaluation function towards which
to optimize (θ(ai)). In our case, we provide θ1(ai) and
θ2(ai) of which we take the mean to result in the overall
evaluation function

θ(ai) =
θ1(ai) + θ2(ai)

2
. (4)

Initially, PSO will create a random configuration within
the 7-dimensional space formed by the camera simulation
parameters and randomly distribute a swarm of agents
around it.

As shown in Algorithm 1, in every iteration t a simulated
camera image Ii is generated depending on the parameters
of the respective agent ai and the evaluation function θ(ai)
is resolved. Afterwards, the center of the agent distribution
shifts in the direction of the current global optimum. After
a specified maximum number of iterations, the position of
the globally optimal agent determines the optimized set of
camera simulation parameters to be used from then on.

PSO itself has some parameters to tune which resemble the
number of agents |A|, the agent velocity ω, per-agent φP

and swarm inertia φG. In our approach, we heuristically
tuned these to minimize the risk of undesired local minima
with |A| = 20, ω = 0.4, φP = 0.3 and φG = 0.3. These
values should be reasonable to use in any similar setting
so that our method enables the users to closely adapt to
the concrete on-site underwater environment conditions.
Meta-optimizing the Particle Swarm Optimizer has been
subject to research (e.g. Carlisle and Dozier (2001)), but
we regard this topic as out-of-scope for the work proposed
in this paper.



real (0, 0.4172) (1, 0.4097) (4, 0.3837) (5, 0.3820) (8, 0.3728) (10, 0.3721)

(11, 0.3717) (14, 0.3696) (15, 0.3666) (16, 0.3660) (17, 0.3650) (18, 0.3638) (19, 0.3622)

real (0, 0.3519) (4, 0.3501) (5, 0.3214) (6, 0.3156) (9, 0.3054) (10, 0.3051)

(17, 0.3044) (20, 0.3040) (22, 0.3035) (23, 0.3028) (24, 0.3027) (53, 0.3019) (54, 0.3014)

Fig. 2. PSO results: (t, θ) for real-world (top left) to optimized image (bottom right) in a scene focused on artificial
objects (top) and on ocean environment (bottom)
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Fig. 3. PSO results for a scene focused on artificial objects
(green) and on ocean environment (blue)

3.5 Camera Simulation Fidelity Enhancement Results

The image sequence in Figure 2 shows the optimization
steps for two scenes with different characteristics with
the θ optimization measure improving over time as in
Figure 3. It can be observed that, from the first iteration
already, the resulting images are in a reasonable parameter
region, however, their fidelity improves over the course of
the optimization. We set the maximum number of PSO
iterations tmax = 100, but the parameters converged
earlier already, for 18 and 53 iterations, respectively. Since
the optimization measures θ1 and θ2 do not explicitely
contain blurriness or light scattering, PSO overemphasizes

1 used implementation: https://github.com/tisimst/pyswarm

the fog density ρF by some extent. This could be overcome
by integrating a blurriness measure, however, such fine-
grain optimization may not be possible with the current
architecture.

Nevertheless, for fully-automatic backward optimization
depending only on collected real-world data, the results
are convincing because the optimization procedure can be
run in the beginning of every dive before the activation of
(semi-)autonomous robot capabilities without the need for
manual tuning. An additional feature is the fact that the
backward optimization depends on the scene contents, as
can be seen in the different results for artificial object-
based and clear ocean-based images (Figure 2). Hence,
depending on which methods or algorithms are going to be
tested on what kind of scene, running our backward opti-
mization method guarantees simulated camera parameter
settings that correspond with the respective scene.

4. DEEP-SEA CAMERA IMAGE ENHANCEMENT

In this section, we discuss the forward optimization of
the real-world data based on the synchronized information
from the simulation. First, a brief summary of image en-
hancement methods for underwater is presented, followed
by analysis of results from a DexROV field trial.

4.1 Image Enhancement Using Dark-Channel Prior

Backscattering is the main source of degradation in un-
derwater images as pointed out in Schechner and Karpel
(2005); Treibitz and Schechner (2009), which causes a
haze effect. The dehazing process has been identified as
an ill-posed inversed problem, since atmospheric light and
depth of observed objects varies continuously. In order to
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mitigate this effect, the dark-channel prior (DCP) method
has been proposed (Zeng and Dai, 2016) and used actively
in recent years; this method works on the principle that
image patches in non-object regions (sky, water) have very
low intensity for at least one color channel. In this way,
bright patches in object regions indicate the presence of
backscatter and its effects on the image can be reverted.

Basically, DCP and derived methods used the estimated
dark channel to compute the image atmospheric light and
transmission map, which are denoted as e−zac and bc in
Equation 1, respectively. A comparison of dark channel-
based dehazing methods can be found in Lee et al. (2016).

4.2 Image Enhancement Using SIL Forward Optimization

Taking advantage of the inferred spatial conditions be-
tween the simulated and real environment, the ground-
truth transmission map

t(z) = e−zac (5)

can be retrieved using a known model of the target object
(DexROV panel) and the simulator’s depth camera. Thus,
the dehazed image can be constructed by solving for ic
in 1. As for the atmospheric light bc, the simulated depth
camera can accurately segment free-space from objects;
subsequently, we choose bc as the average intensity value
of the free (water) region.

Our method works image frame-wise and does not opti-
mize any global parameters, but for the given problem
of image dehazing, no global method can be constructed
because the amount of haze and hence the target color
intensity is depth-dependent. As an additional asset, our
method is able to obtain enhanced deep-sea images online,
opposite to current dark channel methods which consume
significant computation time during the transmission map
refinement, 10 s up to 25 s for images with resolution of
600 × 400 pixels according to Lee et al. (2016). For our
application, 640× 480 pixels images are used.

4.3 Deep-Sea Camera Image Enhancement Results

The images in Fig. 4 show a comparison between the DCP
and SIL enhancement methods.

Qualitatively, it can be observed that the SIL-produced
image has higher contrast than both the original image
and the DCP-enhanced one. This is particularly visible
on the handles which are integral components of deep-sea
operations such as detection, tracking and manipulation
of valves, levers etc. Likewise, through the use of the
synchronized simulation, the water region can be clearly
segmented and its original can be preserved by the largest
extent. Some imperfect transmission maps from DCP
cause color mismatches as visible at the panel bottom
(Fig. 4 center). Refinement techniques exist, such as soft-
matting, however they demand for extra computation
time. On the other hand, we can see that the sea floor
shows better contrast for DCP as, in the considered
scenario, there is no previously known model for it. Hence,
with our method, the colors cannot be optimized for
this region since no depth information is available and
consequently, the sea floor shifts towards the ambient
color.

descriptor real DCP SIL

ORB 74 61 82

BRIEF 110 108 124

SIFT 123 102 118
SURF 167 131 187

KAZE 128 148 156

AKAZE 86 80 94

Table 2. Camera image enhancement results:
number of features per image descriptor for
real, DCP-enhanced and SIL-enhanced image

In order to evaluate the impact on object recognition or
manipulation tasks, we compute several feature descriptors
in different images showing instances of the panel. For
this the original and DCP and SIL enhanced images are
used (see Fig. 5). As a measure, we count the number of
feature matches, found through k -nearest-neighbor, whose
Euclidean distance is less than a threshold of 0.25 in the
feature space.

In Table 2, it can be seen that overall more features
are matched in the SIL-enhanced image, which should
improve object detection and tracking algorithms. For
example, Fig. 5 shows that the region marked in red
with the furthest handle in the panel exhibits feature
matching only after the SIL forward optimization. As
for the DCP enhancement, it causes feature degradation
despite the fact that it recovers part of the original colors of
the image. Summarized, for feature-reliant detection and
tracking techniques, the presented method allows for an
improvement of features to be detected and hence for the
information available for the respective algorithms.

5. CONCLUSION

In the context of continuous system integration and deploy-
ment (Fromm et al. (2017)), in our previous work, we pro-
posed a simulation in the loop (SIL) architecture (Mueller
et al. (2018)). Deep-sea robotics projects like DexROV
(Gancet et al. (2016)) can profit from such an architec-
ture to provide an assessment of the system component
performance with respect to robot self-localization, scene
modeling, object perception and other (semi-)autonomous
functionality.

However, meaningful assessment can only be achieved if
the fidelity between simulation and real-world conditions
exceeds a certain threshold. In our previous work we
presented methods for backward optimization concerning
spatial conditions. In this publication, we used the same
setup to improve the environmental conditions as to lift
the simulation utility above said threshold. Exploiting this
setup, we employed forward optimization on an image
enhancement task as to make the results more useful in
an underwater context.

Summarized, backward/forward optimization in a closed-
loop simulation allows for a significant utility increase in
terms of algorithm and method development, especially in
harsh and remote areas with difficult visual conditions like
found in deep-sea robotics.
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