
A Tutorial on Task-Parameterized Movement Learning and Retrieval

Sylvain Calinon∗

Abstract

Task-parameterized models of movements aim at automat-
ically adapting movements to new situations encountered
by a robot. The task parameters can for example take the
form of positions of objects in the environment, or land-
mark points that the robot should pass through. This
tutorial aims at reviewing existing approaches for task-
adaptive motion encoding. It then narrows down the scope
to the special case of task parameters that take the form
of frames of reference, coordinate systems, or basis func-
tions, which are most commonly encountered in service
robotics. Each section of the paper is accompanied with
source codes designed as simple didactic examples imple-
mented in Matlab with a full compatibility with GNU Oc-
tave, closely following the notation and equations of the
article. It also presents ongoing work and further chal-
lenges that remain to be addressed, with examples pro-
vided in simulation and on a real robot (transfer of ma-
nipulation behaviors to the Baxter bimanual robot). The
repository for the accompanying source codes is available
at http://www.idiap.ch/software/pbdlib/.
Keywords: Probabilistic motion encoding, Task-
parameterized movements, Task-adaptive models, Natural
motion synthesis

1 Introduction

In contrast to industrial robots in large factories, a wide
range of service robots are designed to move in uncon-
strained environments in which they should fulfill a series
of tasks while swiftly reacting to perturbations. The ex-
pectations and promises of service robotics applications
are very challenging and cannot be achieved without joint
efforts from different fields of robotics. This exploitation
of various methods can hardly be done serially, and in-
stead requires closer interactions between learning, plan-
ning and control. One of the prior requirement to face such
challenge is to design a versatile representation of what
the robot should do (how it should move, which behavior
it should follow) that is compatible with the above tech-
niques and that can be shared bilaterally. In particular,
in continuously changing environments, the movements of
service robots need to be generated and adapted to the
ongoing situation very quickly.
This tutorial takes the perspective that the challenges of

recognizing, predicting and generating movements can be
achieved within the same encoding strategy. It will show
that simple probabilistic mixture models can be exploited

∗Idiap Research Institute, Martigny, Switzerland, E-mail:
sylvain.calinon@idiap.ch. This work was in part supported by
the DexROV Project through the EC Horizon 2020 programme
(Grant #635491). The final publication is available at Springer via
http://dx.doi.org/10.1007/s11370-015-0187-9.

to model the natural variations in human and robot mo-
tions, as well as to make links between learning, online
planning and optimal control. Gaussian mixture models
provide a structure that is compatible with many robot
learning approaches. It is flexible to the requirements of
service robotics, because the representation can be easily
adapted to the application requirements while preserving
the core probabilistic mixture modeling strategy (addition
of transition information in the form of an HMM, subspace
clustering with MFA or MPPCA, etc.). Finally, the model
is not tied to a specific parameters estimation technique,
which allows the movements to be acquired by different
interaction modalities and learning strategies.

The tutorial will focus on task-parameterized Gaussian
mixture model (TP-GMM), by presenting a number of ex-
tensions and ongoing challenges targeting applications in
unconstrained environment.

1.1 Organization of the paper

Section 2 discusses the importance of considering adap-
tive models of movements in robotics. It introduces the
proposed approach from a high-level perspective and mo-
tivates it by using a toy example with a single Gaussian.

Section 3 presents the core of the approach by taking the
example of a standard Gaussian mixture model (GMM)
modified as a task-parameterized GMM (TP-GMM). It
also discusses the practical use of regularization terms.

The next four sections present techniques that rely on
the core TP-GMM encoding strategy but that tackle dif-
ferent challenges, by moving progressively from encoding
issues to kinematic and dynamic retrieval of data. Section
4 addresses the challenge of handling high dimensional
data with subspace clustering extensions of the model.
Section 5 discusses the challenge of generating continuous
movements from task-parameterized models. It presents
two distinct approaches based on Gaussian mixture re-
gression (Section 5.1) or trajectory models encoding of
dynamic features (Section 5.2).

Section 6 then extends the motion synthesis challenge
to the important problem of learning a controller for the
robot, by presenting a minimal intervention control strat-
egy that can exploit the proposed task parameterized
model.

Section 7 gives an overview of more advanced forms of
task parameterization that can be considered, such as con-
straints in different data spaces (e.g., to handle constraints
at joint and end-effector levels simultaneously), as well as
priority and projection constraints.

Finally, Section 8 presents comparisons with other task-
adaptive approaches, and Section 9 discusses further work.

Each section of the paper is accompanied with source
codes designed as simple didactic examples implemented

1

Demonstrations Reproduction attempts

Figure 1: Solving a task adaptation problem as a standard regression problem does not always provide satisfying
generalization capability. Left: 4 demonstrations where the task parameters are treated as inputs (position and
direction of the second object concatenated in a vector), and where the motion model parameters are treated as outputs
(GMM parameters concatenated in a vector). Here, each demonstration is aligned by fitting a single model to the
concatenated set of demonstrations. Right: Reproduction attempts by treating the problem of adapting the movement
to the new task parameters as standard regression, namely by relying on the training set to regenerate new model
parameters based on new task parameters, and by using this model to generate a new motion with Gaussian mixture
regression. Here, both inputs and outputs are treated as multidimensional vectors. The 6 reproduction attempts
consider situations of increasing complexity. We can observe that the system provides good interpolation results but
cannot extrapolate well when faced with situations that are far from the regions covered by the demonstrations. This
example was implemented with Gaussian process regression, but similar reproduction results are observed with other
regression mechanisms. As expected, reproductions far outside the regions covered by the demonstrations will tend to
collapse to an average of the different trajectory models, resulting in poor generalization capability.

in Matlab/GNU Octave. In order to facilitate reading,
implementation details such as estimation update rules
have been gathered at the end of the paper in the form of
Appendices.

2 Adaptive models of movements

Task-parameterized models of movements/behaviors refer
to representations that can automatically adapt to a set
of task parameters that can, for example, describe the
current context, situation, state of the environment, or
state of the robot configuration. The task parameters refer
to the variables that can be collected by the system and
that describe a situation, such as positions of objects in
the environment. The task parameters can be fixed during
an execution trial or they can vary while the motion is
executed. The model parameters refer to the variables
learned by the system, namely, that are stored in memory
(the internal representation of the movement). During
reproduction, a new set of task parameters (description of
the present situation) is used to produce new movements
(e.g., adaptation to new position of objects after having
observed the skill in a different situation).

Several denominations have been introduced in the liter-
ature to describe these models, such as task-parameterized
[91, 63, 20] (the denomination used here), parametric
[102, 51, 59], stylistic [13] or object-centric warping [56].
In these models, the encoding of skills usually serve several
purposes, including classification, prediction, synthesis
and online adaptation. A taxonomy of task-parameterized
models is presented in [14], with three broad categories,
namely:

1. Approaches employing M models for the M demon-
strations, performed inM different situations, see e.g.
[29, 47, 59, 50, 97, 21, 44];

2. Approaches employing P models for the P frames of
reference that are possibly relevant for the task, see
e.g. [3, 65, 25];

3. Approaches employing a single model whose param-
eters are modulated by task parameters, see e.g.
[102, 51, 43, 79, 71, 70].

In the majority of these approaches, the retrieval of
movements from the model parameters and the task pa-
rameters is viewed as a regression problem. This gener-
ality might look appealing at first sight, but it also lim-
its the generalization scope of these models, see Fig. 1.
Task-parameterized Gaussian mixture models (TP-GMM)
aims at increasing this generalization capability by ex-
ploiting the functional nature of task parameters. Indeed,
in robotics applications, task parameters can most of the
time be related to frames of reference, coordinate systems,
basis functions or local projections, whose structure can
be exploited to speed up learning and provide the system
with better extrapolation capability.

2.1 Proposed approach

The proposed approach uses a generative model to encode
the movement, where the variability and correlation infor-
mation is used to infer the impedance parameters of a vir-
tual spring-damper system. These parameters figuratively
correspond to the stiffness of a spring and to the damping

2

Table 1: Notation and names of variables.

Dimensions:

T Number of datapoints in a trajectory (t will be used as index)

N Number of datapoints in a training set (t will be used as index)

M Number of demonstrated trajectories in a training set (m will be used as index)

D Dimension of a datapoint

C Number of derivatives (including position) to represent the state space (C =2 for [x⊤, ẋ⊤]
⊤

)

d Dimension of the subspace in which datapoints are projected

K Number of Gaussian components in a mixture model (i and k will be used as indices)

P Number of candidate frames in a task-parameterized mixture (j will be used as index/exponent)

Distributions:

N (µ
(j)
i ,Σ

(j)
i) i-th multivariate Gaussian distribution in frame j of a TP-GMM

µ
(j)
i Center of the Gaussian

Σ
(j)
i Covariance matrix (σ2

i

(j)
for unidimensional Gaussian)

πi Prior probability

P(xI,xO), Joint probability of xI and xO

P(xO|xI), Conditional probability of xO given xI

N (x|µ,Σ) Likelihood of x to be sampled from the normal distribution with parameters µ and Σ

Feature spaces:

x Position in Cartesian space (operational space)

u Control command in operational space (acceleration in Cartesian space)

q Position in joint space (configuration space)

ξ Used to describe a generic multidimensional vector or matrix (e.g., ξ = [x⊤, ẋ⊤]
⊤

)

At,j Linear transformation matrix describing frame j at time step t (e.g., orientation of object j)

bt,j Offset vector describing frame j at time step t (e.g., location of object j)

Linear algebra operators:

ξ⊤ Transpose of matrix/vector ξ

ξ−1 Inverse of a square matrix ξ

ξ† Pseudoinverse of matrix/vector ξ

ξ̇ Velocity (for corresponding position ξ)

ξ̈ Acceleration (for corresponding position ξ)

ξI Subset of a multidimensional vector/matrix that spans input dimensions

ξO Subset of a multidimensional vector/matrix that spans output dimensions

0 Matrix with all elements being zeros

I Identity matrix

3

Table 2: List of Matlab/GNU Octave examples (by alphabetic order). The repository for the accompanying source
codes is available at http://www.idiap.ch/software/pbdlib/.

Filename Description

benchmark DS GP GMM01 Benchmark of task-parameterized model based on Gaussian process regression, with trajectory model
(Gaussian mixture model encoding)

benchmark DS GP raw01 Same as benchmark DS GP GMM01 but with raw trajectory
benchmark DS PGMM01 Benchmark of task-parameterized model based on parametric Gaussian mixture model (PGMM)
benchmark DS TP GMM01 Benchmark of task-parameterized Gaussian mixture model (TP-GMM)
benchmark DS TP GP01 Benchmark of task-parameterized Gaussian process (nonparametric task-parameterized method)
benchmark DS TP LWR01 Benchmark of task-parameterized locally weighted regression (nonparametric task-parameterized

method)
benchmark DS TP MFA01 Benchmark of task-parameterized mixture of factor analyzers (TP-MFA)
benchmark DS TP trajGMM01 Benchmark of task-parameterized trajectory-GMM
demo affineTransform01 Affine transformations of raw data as pre-processing step to train a task-parameterized model
demo batchLQR01 Controller retrieval through a batch solution of linear quadratic optimal control (unconstrained linear

MPC), by relying on a Gaussian mixture model (GMM) encoding of position and velocity data (see
also demo iterativeLQR01)

demo batchLQR02 Same as demo batchLQR01 but with only position data
demo DMP GMR01 Emulation of a standard dynamic movement primitive (DMP) by using a GMM with diagonal covariance

matrix, and retrieval computed through Gaussian mixture regression (GMR)
demo DMP GMR02 Same as demo DMP GMR01 but with full covariance matrices coordinating the different variables
demo DMP GMR03 Same as demo DMP GMR02 but with GMR used to regenerate the path of a spring-damper system

instead of encoding the nonlinear forcing term
demo DMP GMR04 Same as demo DMP GMR03 by using the task-parameterized model formalism
demo DMP GMR LQR01 Same as demo DMP GMR04 but with LQR used to refine the parameters of the spring-damper system
demo DMP GMR LQR02 Same as demo DMP GMR LQR01 with perturbations added to show the benefit of full covariance to

coordinate disturbance rejection
demo DSGMR01 Gaussian mixture model (GMM), with a dynamical system based on Gaussian mixture regression(GMR)

driven by a decay term (as in DMP)
demo DTW01 Trajectory realignment through dynamic time warping (DTW)
demo GMM01 Gaussian mixture model (GMM) parameters estimation
demo GMR01 GMM with time-based Gaussian mixture regression (GMR) used for reproduction
demo GPR01 Use of Gaussian process regression (GPR) as a task-parameterized model
demo HDDC01 High Dimensional Data Clustering model (HDDC, HD-GMM)
demo iterativeLQR01 Controller retrieval through an iterative solution of linear quadratic optimal control (finite horizon,

unconstrained linear MPC), by relying on a GMM encoding of position and velocity data (see also
demo batchLQR01)

demo iterativeLQR02 Same as demo iterativeLQR01 with only position data
demo MFA01 Mixture of factor analysers (MFA) parameters estimation
demo MPPCA01 Mixture of probabilistic principal component analyzers (MPPCA) parameters estimation
demo stdPGMM01 Parametric Gaussian mixture model (PGMM) used as a task-parameterized model, with DS-GMR

employed to retrieve continuous movements
demo testDampingRatio01 Test with critically damped system and ideal underdamped system
demo testLQR01 Test of linear quadratic regulation (LQR) with different variance in the data
demo testLQR02 Test of LQR with evaluation of the damping ratio found by the system
demo testLQR03 Comparison of LQR with finite and infinite time horizons
demo testLQR04 Demonstration of the coordination capability of linear quadratic optimal control when combined with

full precision matrices
demo TPbatchLQR01 Task-parameterized GMM encoding position and velocity data, combined with a batch solution of linear

quadratic optimal control
demo TPbatchLQR02 Batch solution of a linear quadratic optimal control acting in multiple frames, which is equivalent to

TP-GMM combined with LQR
demo TPGMM01 Task-parameterized Gaussian mixture model (TP-GMM) encoding
demo TPGMR01 TP-GMM with GMR used for reproduction (without dynamical system)
demo TPGMR DS01 Dynamical system with constant gains used with a task-parameterized model
demo TPGMR LQR01 Finite horizon LQR used with a task-parameterized model
demo TPGMR LQR02 Infinite horizon LQR used with a task-parameterized model
demo TPGP01 Task-parameterized Gaussian process regression (TP-GPR)
demo TPHDDC01 Task-parameterized high dimensional data clustering (TP-HDDC)
demo TPMFA01 Task-parameterized mixture of factor analyzers (TP-MFA)
demo TPMPC01 Task-parameterized model encoding position data, with MPC used to track the associated stepwise

reference path
demo TPMPC02 Same as demo TPMPC01 with a generalized version of MPC used to track associated stepwise reference

paths in multiple frames
demo TPMPPCA01 Task-parameterized mixture of probabilistic principal component analyzers (TP-MPPCA)
demo TPtrajGMM01 Task-parameterized model with trajectory-GMM encoding
demo trajGMM01 Reproduction of trajectory with a GMM with dynamic features (trajectory-GMM)
demo trajMFA01 Trajectory model with either a mixture of factor analysers (MFA), a mixture of probabilistic principal

component analyzers (MPPCA), or a high-dimensional data clustering approach (HD-GMM)
demoIK nullspace TPGMM01 Inverse kinematics with nullspace treated with task-parameterized GMM (bimanual tracking task, ver-

sion with 4 frames)
demoIK pointing TPGMM01 Task-parameterized GMM to encode pointing direction by considering nullspace constraint (4 frames)

(example with two objects and robot frame, starting from the same initial pose (nullspace constraint),
by using a single Euler orientation angle and 3 DOFs robot)

4

Figure 2: Illustration of the overall approach (see main text for details). (a) Observation of a task in different situations
and generalization to new contexts. Multiple demonstrations provide the opportunity to discern the structure of the
task. (b) Probabilistic encoding of continuous movements in multiple coordinate systems. (c) Exploitation of variability
and correlation information to adapt the motion to new situations. With cross-situational observations of the same
task, the robot can generalize the skill to new situations. (d) Computation of the underlying optimal control strategy
driving the observed behavior.

coefficient of a viscous damper, with the difference that
they can also be full stiffness and damping matrices.

In its task-parameterized version, the model uses several
frames of reference to describe the robot behavior in mul-
tiple coordinate systems. The variations and correlations
observed from the perspective of these different frames are
exploited to determine the impedance of the system with
a linear quadratic regulator. Fig. 2 illustrates the overall
approach, which can be decomposed into multiple steps,
involving statistical modeling, dynamical systems and op-
timal control. This illustration will be used as a guid-
ing thread to describe throughout the article the differ-
ent model components and algorithms enabling learning,
adaptation, synthesis and control of movement skills.

The proposed task-parameterized model is not new:
preliminary versions were investigated in [20, 14, 16] for
the special case of frames of reference representing rota-
tions and translations in Cartesian space. The current
paper discusses the potentials of the approach, and intro-
duces several routes for further investigation, which aim at
applying the proposed technique to a wider range of affine
transformations (directly exploiting the robotics applica-
tion domain), including constraints in both configuration
and operational spaces, as well as priority constraints. It
also shows that the proposed method can be applied to
different probabilistic encoding strategies, including sub-
space clustering approaches that enable the model to han-
dle feature spaces of high dimensions.

Table 1 will be used as a reference to the notation,
dimensions and names of variables employed in the pa-
per. As a general rule, lowercase and uppercase bold fonts
respectively indicate vectors and matrices, while normal
fonts indicate scalars. Table 2 lists all examples available
as Matlab/GNU Octave source codes.

2.2 Example with a single Gaussian

Before presenting the details of the task-parameterized
model, the approach is motivated by an introductory ex-
ample with a single Gaussian. Two frames are considered,
described respectively at each time step t by {bt,1,At,1}

Figure 3: Minimization of the objective function in Eq.
(3) composed of a weighted sum of quadratic error terms,
whose result corresponds to a product of Gaussians.

and {bt,2,At,2}, representing the origin of the observer b
and a set of basis vectors {e1, e2, . . .} forming a transfor-
mation matrix A=[e1e2 · · ·].

A set of demonstrations is observed from the perspec-
tive of the two frames. During reproduction, each frame
expects the new datapoints to lie within the same range.

If N
(

µ(1),Σ(1)
)

and N
(

µ(2),Σ(2)
)

describe the obser-

vations in the first and second frames, the two observers
respectively expect the reproduction attempts to lie within
the distributions
N
(

ξ̂
(1)
t , Σ̂

(1)
t

)

and N
(

ξ̂
(2)
t , Σ̂

(2)
t

)

with

ξ̂
(1)
t =At,1 µ(1)+bt,1 , Σ̂

(1)
t = At,1 Σ(1)A⊤

t,1 , (1)

ξ̂
(2)
t =At,2 µ(2)+bt,2 , Σ̂

(2)
t = At,2 Σ(2)A⊤

t,2 , (2)

computed with the linear transformation property of nor-
mal distributions.
During reproduction, a trade-off needs to be deter-

mined to concord with the distributions expected by each
frame. The underlying objective function is defined as the
weighted sum of the quadratic error terms

ξ̂t = argmin
ξt

2∑

j=1

(
ξt−ξ̂

(j)
t

)⊤
Σ̂

(j)
t

−1(
ξt−ξ̂

(j)
t

)
. (3)

5

The above objective can be solved easily by differenti-
ating and equating to zero the above equation, yielding a
point ξ̂t, with an estimation error defined by a covariance

Σ̂t. It is easy to show that the resulting N
(

ξ̂t, Σ̂t

)

corre-

sponds to the product of the two GaussiansN
(

ξ̂
(1)
t , Σ̂

(1)
t

)

and N
(

ξ̂
(2)
t , Σ̂

(2)
t

)

, see [18] for details.

Fig. 3 illustrates this process for one of the Gaussian in
Fig. 2.

3 Task-parameterized Gaussian mixture model
(TP-GMM)

The task-parameterized Gaussian mixture model (TP-
GMM) is a direct extension of the objective problem pre-
sented above, by considering multiple frames and multiple
clusters of datapoints (soft clustering via mixture model-
ing). It probabilistically encodes the relevance of candi-
date frames, which can change during the task. In contrast
to approaches such as [70] that aim at extracting a single
(most prominent) coordinate system located at the end
of a motion segment, the proposed approach allows the
superposition and transition of different coordinate sys-
tems that are relevant for the task (parallel organization
of behavior primitives, adaptation to multiple viapoints
in the middle of the movement, or modulation based on
positions, orientations or geometries of objects).
Each demonstration m ∈ {1, . . . ,M} contains Tm dat-

apoints forming a dataset of N datapoints {ξt}
N
t=1 with

N=
∑M

m Tm.
The task parameters are represented by P coordinate

systems, defined at time step t by {bt,j ,At,j}
P
j=1, repre-

senting respectively the origin of the observer and a trans-
formation matrix.
The demonstrations ξ∈RD×N are observed from these

different viewpoints, forming P trajectory samples X(j)∈
R

D×N . These samples can be collected from sensors lo-
cated at the frames, or computed with

X
(j)
t = A−1

t,j (ξt − bt,j). (4)

The parameters of a TP-GMM with K components are

defined by
{
πi, {µ

(j)
i ,Σ

(j)
i }

P
j=1

}K

i=1
(πi are the mixing co-

efficients, µ
(j)
i and Σ

(j)
i are the center and covariance ma-

trix of the i-th Gaussian component in frame j).
Learning of the parameters is achieved by log-likelihood

maximization subject to the constraint that the data in
the different frames arose from the same source, resulting
in an expectation-maximization (EM) algorithm [23] to it-
eratively update the model parameters until convergence,
see Appendix A for details. Other forms of learning for
mixture models are possible, including spectral clustering
[68, 84, 52], online learning [67, 82, 27, 99, 34] or self-
refinement [19].
For a movement in Cartesian space with 10 demonstra-

tions and 3 candidate frames, the overall learning process
typically takes 1-3 sec on a standard laptop. The repro-
duction is much faster and can be computed online (usu-
ally below 1 msec).
The learned model is then used to reproduce move-

ments in other situations (for new position and orienta-

tion of candidate frames). A new GMM with parameters
{πi, ξ̂t,i, Σ̂t,i}

K
i=1 can automatically be generated with

N
(

ξ̂t,i, Σ̂t,i

)

∝
P∏

j=1

N
(

ξ̂
(j)
t,i , Σ̂

(j)
t,i

)

, with

ξ̂
(j)
t,i =At,jµ

(j)
i +bt,j , Σ̂

(j)
t,i =At,jΣ

(j)
i A⊤

t,j , (5)

where the result of the Gaussian product is given by

Σ̂t,i =
(P∑

j=1

Σ̂
(j)
t,i

−1)−1

, ξ̂t,i = Σ̂t,i

P∑

j=1

Σ̂
(j)
t,i

−1
ξ̂
(j)
t,i . (6)

For computational efficiency, the above equations can be
computed with precision matrices instead of covariances.
Fig. 4 depicts the different steps of the above computation.
The proposed task-parameterized approach requires

each frame to evaluate the local variability of the demon-
strations. This section showed that a mixture model could
be employed to extract this variability. However, other en-
coding strategies can be used as long as the local variations
take the form of full covariances aligned with the differ-
ent frames. In particular, data-driven encoding strategies
can alternatively be employed. This will be shown later in
Section 8 by using two examples with task-parameterized
Gaussian process (TP-GP) and task-parameterized locally
weighted regression (TP-LWR).

A Matlab/GNU Octave implementation of TP-GMM
can be found in the demo TPGMM01.m example. An
example with a standard mixture is also provided in
demo GMM01.m. An example showing the construction of
frames and the collection of data in different frames is
provided in demo affineTransform01.m.

3.1 Regularization of the TP-GMM parameters

In applications that are prone to overfitting, it is relevant
to introduce regularization terms. Regularization has the
effect of avoiding singularities and smoothing the solution
space. An option is to define a minimal admissible eigen-

value λmin and adjust each covariance matrix Σ
(j)
i so that

Σ
(j)
i ← V

(j)
i D̃

(j)

i V
(j)
i

⊤

, (7)

with D̃
(j)

i =

λ̃
2(j)
i,1 0 · · · 0

0 λ̃
2(j)
i,2 · · · 0

...
...

. . .
...

0 0 · · · λ̃
2(j)
i,d

,

and λ̃
(j)
i,k = max(λ̃

(j)
i,k , λmin) ∀k ∈ {1, . . . , d},

where V
(j)
i is a matrix containing the stacked eigenvectors

of Σ
(j)
i , with λ

(j)
i,k the corresponding eigenvalues.

Another approach is to set a priori uncertainties on the
covariance parameters in the form of a diagonal isotropic
covariance Iρ (Tikhonov regularization), so that

Σ
(j)
i ← Σ

(j)
i + Iρ, (8)

with I an identity matrix and ρ a small scalar factor that
can be either set empirically or estimated from the data.

6

Figure 4: TP-GMM retrieval process and associated variables. (a-b) shows the model parameters (TP-GMM with 3
Gaussians and 2 frames). (c) Temporary GMM retrieved at time step t for a new configuration of the two frames. (d-f)
Details of computation, where each temporary Gaussian is retrieved as a product of linearly transformed Gaussians.

The difference with Eq. (7) is that a value ρ is added to

each λ
(j)
i,k instead of truncating the eigenvalues. The same

development can be done with singular value decompo-
sition, emphasizing the effect of the regularization on the
condition number, by forcing it to be higher than a thresh-
old as in Eq. (7) or by increasing the singular values as in
Eq. (8). It is in some applications convenient to apply
small regularization terms at different steps of the proce-
dure (e.g., at each iteration in the EM process and after
convergence before computing Gaussian products).

4 Extension to task-parameterized subspace clus-
tering

Classical Gaussian mixture models tend to perform poorly
in high-dimensional spaces if too few datapoints are avail-
able. This is also true for robotics problems aiming at
encoding multivariate and multimodal signals from only
few demonstrations. Namely, if the training set is {ξt}

N
t=1

with ξt ∈ R
D, the curse of dimensionality occurs if the

dimension of the data D is too large compared to the size
of the training set N . In particular, the problem can af-

fect the full covariances Σ
(j)
i ∈ R

D×D in (52) because the
number of parameters to be estimated quadratically grows
with D.
Bouveyron and Brunet reviewed various ways of view-

ing the problem and coping with high-dimensional data in
clustering problems [11]. In practice, three viewpoints can
be considered:

1. Since D is too large compared to N , a global di-
mensionality reduction should be applied as a pre-
processing step to reduce D.

2. SinceD is too large compared toN , the solution space
contains many poor local optima; the solution space
should be smoothed by introducing ridge or lasso reg-
ularization in the estimation of the covariance (avoid-
ing numerical problem and singular solutions when
inverting the covariances). As discussed in Section
3.1, a simple form of regularization can be achieved
after the maximization step of each EM loop.

3. Since D is too large compared to N , the model is
probably over-parametrized, and a more parsimo-
nious model should be used (thus estimating a fewer
number of parameters).

One example falling in the last category would be to
consider spherical or diagonal covariances instead of full
matrices, corresponding to a separate treatment of each
variable. Although commonly employed in robotics, such
decoupling is a limiting factor to encode gestures and sen-
sorimotor streams, because it does not fully exploit prin-
ciples underlying coordination, motor skill acquisition and
actionperception couplings [66, 41, 80, 53, 94, 86, 83, 103].
Our rationale is that diagonal constraints are too strong

for motor skill encoding, because it loses important syn-
ergistic information among the variables. There are, how-
ever, a wide range of alternatives in mixture modeling,
which are in-between the encoding of diagonal and full
covariances, and that can readily be exploited in the con-
text of robot skills acquisition. These alternatives can be
studied as a subspace clustering problem, that aims at
grouping the data such that they can be locally projected
in a subspace of reduced dimensionality, thus helping the
analysis of the local trend of the movement, while reducing
the number of parameters to be estimated, and ”locking”

7

Figure 5: Exploitation of the covariance structure in a
mixture of factor analyzers (MFA) to consider intermedi-
ary steps between the modeling as diagonal covariances
(left) and full covariances (right).

the most important synergies to cope with perturbations.
Many possible constraints can be considered, grouped in

families such as parsimonious GMM [11, 61, 7], mixtures
of factor analyzers (MFA) [60] or mixtures of probabilis-
tic principal component analyzers (MPPCA) [93]. These
techniques will next be described in the context of task-
parameterized models.

4.1 Parsimonious TP-GMM

By following the perspective of Section 3.1, a parsimonious
TP-GMM can be defined by considering the spectral de-
composition of the covariances

Σ
(j)
i = V

(j)
i D

(j)
i V

(j)
i

⊤

, (9)

with V
(j)
i a matrix of ordered eigenvectors (determining

the orientation of the cluster) and D
(j)
i a diagonal matrix

with ordered eigenvalues λ
(j)
i,k (determining the shape of

the cluster), where constraints are set by sharing some of
these elements among the clusters, and/or by keeping only
the first d eigenvectors and eigenvalues in the parameter-
ization.
The high-dimensional data clustering (HDDC) ap-

proach from [12] lies in this category of models addressing
both subspace clustering and regularization. An example
of implementation is to consider that the subspace of each
cluster i is generated by the first di eigenvectors associ-

ated with the first d
(j)
i eigenvalues λ

(j)
i,k , and that outside

of this subspace, the variance is spherical, modeled by a
single parameter

λ̄
(j)
i =

1

D−d
(j)
i

D∑

k=d
(j)
i

+1

λ
(j)
i,k =

1

D−d
(j)
i

(

tr(Σ
(j)
i)−

d
(j)
i∑

k=1

λ
(j)
i,k

)

,

(10)
which is used to reconstruct a full covariance matrix by

replacing the last D − d
(j)
i eigenvalues with λ̄

(j)
i .

A Matlab/GNU Octave implementation of HDDC in the
context of task-parameterized models can be found in
demo TPHDDC01.m.
An example with a standard mixture models is also pro-
vided in demo HDDC01.m.

4.2 Task-parameterized mixture of factor analyz-
ers (TP-MFA)

Factor analysis (FA) is an approach as old as principal
component analysis (PCA) to cope with dimension reduc-
tion, often overshadowed by PCA although is has an equiv-
alently important literature on the topic [12]. The basic

idea of factor analysis is to reduce the dimensionality of
the data while keeping the observed covariance structure,
see [26] for an example of application in robotics.
The TP-GMM presented in Section 3 is fully compat-

ible with subspace clustering approaches based on factor
analysis. A task-parameterized mixture of factor analyzers
(TP-MFA) assumes for each component i and frame j a
covariance structure of the form

Σ
(j)
i = Λ

(j)
i Λ

(j)
i

⊤

+Ψ
(j)
i , (11)

where Λ
(j)
i ∈ R

D×d, known as the factor loadings matrix,
typically has d<D (providing a parsimonious representa-

tion of the data), and a diagonal noise matrix Ψ
(j)
i .

The factor loading and noise terms of the covariance
matrix can be constrained in different ways (e.g., such as
being shared across Gaussian components), yielding a col-
lection of eight parsimonious covariance structures [61].
For example, the task-parameterized mixture of probabilis-
tic principal component analyzers (TP-MPPCA) [93] is a
special case of TP-MFA with the distribution of the errors

assumed to be isotropic with Ψ
(j)
i =Iσ

(j)
i

2
.

Fig. 5 shows that the covariance structure in MFA can
span a wide range of covariances.

Appendix B details the structure of TP-MFA and pro-
vides an EM algorithm to estimate the model parameters.

The hypothesis of TP-MFA models can be viewed as
less restrictive as TP-HDDC models based on eigendecom-
position (see Section 4.1), because the subspace of each
class does not need to be spanned by orthogonal vectors,
whereas it is a necessary condition in models based on
eigendecomposition [12].

Similarly to parsimonious GMM based on eigendecom-
position, the covariances in TP-MFA can be constrained
by fixing d or by sharing elements among the mixture com-
ponents. This encoding strategy can then be extended to
variants of MFA aiming at optimizing the sharing and re-
use of subspaces among the Gaussian components, such as
in semi-tied covariance [31]. These techniques can be ex-
ploited to extend the concept of synergies to a wider range
of rich motor skills, with a simultaneous segmentation and
re-use of previously discovered synergies.

For each approach, a dedicated EM update can be de-
rived corresponding to the type of constraints considered
[61]. They all reconstruct estimates of the full covariances,
which is an important characteristic that will be exploited
in the next sections of this article.

The TP-MFA extension of TP-GMM opens several
roads for further investigation. Bayesian nonparametric
approaches such as [101] can be used to simultaneously
select the number of clusters and the dimension of the
subspace in each cluster. Another extension is to use tied
structures in the covariances to enable the organization
and reuse of previously acquired synergies [31].

Another possible extension is to enable deep learning
strategies in task-parameterized models. As discussed in
[92], the prior of each FA can be replaced by a separate
second-level MFA that learns to model the aggregated
posterior of that FA (instead of the isotropic Gaussian),
providing a hierarchical structure organization where one
layer of latent variables can be learned at a time. This

8

Figure 6: Example of TP-MFA to encode and retrieve full-body dancing motion from [36]. Here, the motion of one
of the two partners (D=94) is retrieved by adapting it online to the motion of the other partner. In the model, the
red stick figure (in thin line) is the frame of reference and the gray stick figure (in thick line) is the motion encoded
in TP-MFA. The black stick figure (in thick line) shows the motion regenerated with TP-MFA and Gaussian mixture
regression, based on the observation of the red stick figure. For 12 Gaussian components (K=12) and a subspace of
2 dimensions (d=2) encoding a motion of 94 dimensions, the total number of parameters in TP-MFA is 4511. The
corresponding number of parameters in a TP-GMM with full covariances would be 54719. We can see that TP-MFA
generates a smooth and natural movement similar to the original dance.

can be exploited as a link with deep learning strategies
[40, 9] for real-valued high-dimensional data within di-
rected graphical models.
Fig. 6 shows a kinematic example with TP-MFA used

for encoding and synthesis purposes.

Matlab/GNU Octave implementations of TP-MFA and
TP-MPPCA can be found in demo TPMFA01.m and
demo TPMPPCA01.m. The corresponding examples for
standard mixture models can also be found in
demo MFA01.m and demo MPPCA01.m.

5 Extension to motion synthesis

While the previous sections focused only on TP-GMM as
an encoding strategy, this section addresses the problem
of generating movements from the model.
Several approaches can be used to retrieve continuous

movements from a TP-GMM. The next two subsections
provide examples for two different synthesis techniques.
The first technique is to encode a decay term or a time
variable as an additional feature in the mixture, and use
Gaussian mixture regression (GMR) [33] to retrieve move-
ments adapted to the current situations. The second tech-
nique is to encode both static and dynamic features in the
mixture model as in trajectory-HMM [30, 95, 106, 89].
These two techniques are described next.

5.1 Gaussian mixture regression (GMR)

With a GMM representation, the reproduction of a move-
ment can be formalized as a regression problem [33]. We

showed in [18, 17] that in robot learning, Gaussian mix-
ture regression (GMR) offers a simple solution to generate
continuous movements from a GMM. GMR relies on basic
properties of normal distributions (linear transformation
and conditioning). It provides a probabilistic retrieval of
movements or policies, in which the model can compute
the next actions on-the-fly, with a computation time that
is independent of the number of datapoints used to train
the model.

In contrast to other regression methods such as locally
weighted regression (LWR) [78], locally weighted projection
regression (LWPR) [100], or Gaussian process regression
(GPR) [69, 35, 74], GMR does not model the regression
function directly. It models the joint probability density
function of the data, and then derives the regression func-
tion from the joint density model, see [88] for an excellent
review of regression approaches. The estimation of the
model parameters is thus achieved in an offline phase that
depends linearly on the number of datapoints. Regression
is then independent of this number and can be computed
very rapidly, which makes the approach an interesting al-
ternative to regression methods whose processing grows
with the size of the dataset. The other benefit is that
both input and output variables can be multidimensional
without modification of the model.

GMR can for example be employed in robot applications
requiring input and output dimensions to be specified at
run time (e.g., to handle missing sensory inputs, or to
react swiftly by retrieving partial outputs).

The superscripts I and O will be further used to de-
scribe the dimensions that span for input and output (used

9

GMR can cover a large spectrum
of regression mechanisms

Least squares

linear regression

Nadaraya-Watson

kernel regression

Figure 7: Illustration of the encoding of P(ξI, ξO) as a Gaussian mixture model (GMM) with two components, and
estimation of P(ξO|ξI) with Gaussian mixture regression (GMR), where both ξI and ξO can be multidimensional.
The model can emulate a large spectrum of regression mechanisms, from standard linear regression (when a single
component K=1 is used), to non-linear kernel regression (with K=N and a Gaussian centered on each datapoint).

as exponents for vectors and matrices). The general case of
a GMM encoding a dataset ξ with the joint distribution
P(ξI, ξO) ∼

∑K

i=1 πi N (µi,Σi) will first be described,
which will later be extended to its task-parameterized ver-
sion.

At each iteration step t, the datapoint ξt can be decom-
posed as two subvectors ξI

t and ξO

t spanning for the input
and output dimensions. For trajectory encoding in task
space, I corresponds to the time input dimension (e.g.,
value of a decay term), and O corresponds to the output
dimensions describing a path (e.g., end-effector position in
task space).

With this notation, a block decomposition of the data-
point ξt, vectors µi and matrices Σi can be written as

ξt =

[
ξI

t

ξO

t

]

, µi =

[
µI

i

µO

i

]

, Σi =

[
ΣI

i ΣIO

i

ΣOI

i ΣO

i

]

. (12)

At each time step t during reproduction, P(ξO

t |ξ
I

t) is
computed as the conditional distribution

P(ξO

t |ξ
I

t) ∼
K∑

i=1

hi(ξ
I

t) N
(

µ̂O

i (ξ
I

t), Σ̂
O

i

)

, (13)

with µ̂
O

i (ξ
I

t) = µO

i +ΣOI

i ΣI

i
−1

(ξI

t − µI

i), (14)

Σ̂
O

i = ΣO

i −ΣOI

i ΣI

i
−1

ΣIO

i , (15)

and hi(ξ
I

t) =
πiN (ξI

t | µ
I

i ,Σ
I

i)
∑K

k πkN (ξI

t | µ
I

k,Σ
I

k)
. (16)

Note that Eq. (13) represents a multimodal distribution.
For problems in which a single peaked output distribution
is preferred, Eq. (13) can be approximated by a normal

distribution (see Appendix C for details of computation)

P(ξO

t |ξ
I

t) = N
(

ξO

t | µ̂
O

t , Σ̂
O

t

)

, with (17)

µ̂O

t =

K∑

i=1

hi(ξ
I

t) µ̂
O

i (ξ
I

t), (18)

Σ̂O

t =

K∑

i=1

hi(ξ
I

t)
(

Σ̂
O

i +µ̂O

i (ξ
I

t) µ̂
O

i (ξ
I

t)
⊤

)

−µ̂O

t µ̂
O

t
⊤

.

(19)

The retrieved signal in Eq. (17) encapsulates variation
and correlation information in the form of full covariance
matrices. GMR has so far mostly been used in three man-
ners:

1. as an autonomous system with ξ=[x⊤, ẋ⊤]
⊤

, by learn-
ing P(x, ẋ) with a GMM, with x and ẋ representing
position and velocity of the system (either in task
space or joint space), and by retrieving iteratively
during reproduction a series of velocity commands by
estimating P(ẋ|x) with GMR [38, 39, 17, 46];

2. as time-indexed trajectories with ξ=[t,x⊤]
⊤

, by learn-
ing P(t,x) with a GMM, and retrieving P(x|t) with
GMR for each time step to reproduce smooth trajec-
tories (infinitely differentiable) [18].

3. as a probabilistic formulation of dynamic movement
primitives (DMP) [20].

Alternatively, any subset of input-output dimensions
can be selected, which can change, if required, at each iter-
ation during reproduction. It can for example handle dif-
ferent sources of missing data, as the system is able to con-
sider any combination of multidimensional input/output

10

mappings during the retrieval phase. Expectations on the
remaining dimensions can be computed within the control
loop of the robot, corresponding to a convex sum of linear
approximations (with weights varying non-linearly).
Fig. 7 depicts the use of GMR in the case of time-

indexed trajectories.
GMR can be viewed as a trade-off between a global

and local approach in the sense that the placement and
spread of the basis functions are learned, together with
their responses, as a soft partitioning problem through
expectation-maximization (EM),1 while the prediction is
a weighted superposition of locally linear systems. It
provides variation and correlation information for the re-
trieved multidimensional output, enabling the extraction
of local coordination patterns in the movement.
Note that if the application requires the encoding

of high-dimension data from few observations, subspace
learning techniques such as MFA (see Section 4) can be
used jointly with GMR to locally reduce the dimensional-
ity without modifying the regression process.
The combination of TP-GMM and GMR is simply

achieved by augmenting the dataset in each frame with an
input dimension, and defining all task parametersAt,j and
bt,j so that the input is not modulated by the task parame-
terization. Compared to an initial TP-GMM encoding ξO

with task parameters AO

t,j and bO

t,j , the combination of

TP-GMM and GMR instead encodes ξ=
[
ξI⊤, ξO⊤

]
⊤

with
task parameters

At,j =

[
I 0
0 AO

t,j

]

, bt,j =

[
0
bO

t,j

]

, (20)

where in the case of a decay term (or an explicit time vari-
able driving the system), the identity matrix I collapses
to 1.2

A Matlab/GNU Octave implementation of TP-GMM
with GMR can be found in demo TPGMR01.m. The corre-
sponding example for standard mixture models can also
be found in demo GMR01.m. Examples of DMP learning
with GMR can be found in demo DMP GMR*.m.

5.2 GMM with dynamic features (trajectory-
GMM)

In the field of speech processing, the extraction of statis-
tics from both static and dynamic features within a hidden
Markov model (HMM) has a long history [30, 95, 106]. In
particular, it can be used in speech synthesis to avoid dis-
continuities in the generated speech spectra. The synthe-
sized speech then becomes natural and smooth even when
a small number of Gaussians is used. This is achieved
by coordinating the distributions of both static and dy-
namic features (the dynamic features are often called delta
and delta-delta parameters). In speech processing, these
parameters usually corresponds to the evolution of mel-
frequency cepstral coefficients characterizing the power

1Competition/collaboration arises due to the weighting term ht,i

in Eq. (49) summing over the influence of the other Gaussian com-
ponents.

2Possible extensions are possible here for a local modulation of
movement duration.

spectrum of a sound, but the same trajectory-HMM ap-
proach can be used with any form of continuous signals.
In robotics, this approach has rarely been exploited, at
the exception of the work from Sugiura et al. employing
it to represent object manipulation movements [89].
For the encoding of movements, velocity and accelera-

tion can alternatively be used as dynamic features. By
considering an Euler approximation, the velocity is com-
puted as

ẋt =
xt+1 − xt

∆t
, (21)

where xt is a multivariate position vector. The accelera-
tion is similarly computed as

ẍt =
ẋt+1 − ẋt

∆t
=

xt+2 − 2xt+1 + xt

∆t2
. (22)

By using (21) and (22), a vector ζt will be used to repre-
sent the concatenated position, velocity and acceleration
vectors at time step t, namely3

ζt =

xt

ẋt

ẍt

 =

I 0 0
− 1

∆t
I 1

∆t
I 0

1
∆t2

I − 2
∆t2

I 1
∆t2

I

xt

xt+1

xt+2

 . (23)

ζ and x are then defined as large vectors concatenating
ζt and xt for all time steps, namely

ζ =

ζ1

ζ2
...

ζT

, x =

x1

x2

...

xT

. (24)

Similarly to the matrix operator (23) defined for a single
time step, a large sparse matrix Φ can be defined so that
ζ = Φx, namely4

ζ
︷ ︸︸ ︷

...

xt

ẋt

ẍt

xt+1

ẋt+1

ẍt+1

...

=

Φ
︷ ︸︸ ︷

. . .
...

...
... . .

.

· · · I 0 0 · · ·
· · · − 1

∆t
I 1

∆t
I 0 · · ·

· · · 1
∆t2

I − 2
∆t2

I 1
∆t2

I · · ·
· · · I 0 0
· · · − 1

∆t
I 1

∆t
I 0

· · · 1
∆t2

I − 2
∆t2

I 1
∆t2

I

x
︷ ︸︸ ︷

...

xt

xt+1

xt+2

xt+3

...

.

(25)

The dataset {ζt}
N
t=1 with N =

∑M

m Tm is composed of
M trajectory samples, where the m-th trajectory sam-
ple has Tm datapoints. It can be encoded in a Gaussian
mixture model (GMM), hidden Markov model (HMM) or
hidden semi-Markov model (HSMM) [72]. The example

of a GMM encoding P(ζ) ∼
∑K

i=1 πi N (µi,Σi) will be
described here, which will later be extended to its task-
parameterized version.

3To simplify the notation, the number of derivatives will be set
up to acceleration (C = 3), but the results can easy be generalized
to a higher or lower number of derivatives (in the provided source
codes, a parameter automatically sets the number of derivatives to
be considered).

4Note that a similar operator is defined to handle border condi-
tions, and that Φ can automatically be constructed through the use
of Kronecker products, see source codes for details.

11

Figure 8: Example of trajectory-GMM encoding and retrieval. The planar motion contains multiple options, and is
learned from a set of partial demonstrations that can be provided in any order. Left: Four demonstrations (represented
with different shades of gray), corresponding to different subparts of a longer movement, where a part in the movement
contains two optional paths. Center: The four demonstrations are used to train a trajectory-GMM with K = 18
components. Right: Two movements retrieved from the trajectory-GMM by stochastic sampling (with equal chance
to take one or the other path). We can see that the movements are smooth, with an average position and full covariance
estimated at each time step (represented as a light red flow tube of one standard deviation).

After training, for a given sequence of states s =
{s1, s2, . . . , sT } of T time steps, with discrete states st ∈
{1, . . . ,K},5 the likelihood of a movement ζ is given by

P(ζ|s) =
T∏

t=1

N (ζt|µst
,Σst), (26)

where µst
and Σst are the center and covariance of state

st at time step t. This product can be rewritten as the
conditional distribution

P(ζ|s) = N (ζ|µs,Σs), (27)

with µs=

µs1

µs2
...

µsT

and Σs=

Σs1 0 · · · 0
0 Σs2 · · · 0
...

...
. . .

...

0 0 · · · ΣsT

.

By using the relation ζ = Φx, we then seek during
reproduction for a trajectory x maximizing (27), namely

x̂ = argmax
x

log P(Φx | s). (28)

The part of log P(Φx | s) dependent on x takes the
quadratic error form

c = (µs − ζ)⊤Σ−1
s (µs − ζ) (29)

= (µs −Φx)⊤Σ−1
s (µs −Φx).

A solution can be found by differentiating the above
objective function with respect to x and equating to 0,
providing the trajectory (in vector form)

x̂ =
(
Φ⊤Σ−1

s Φ
)−1

Φ⊤Σ−1
s µs, (30)

with the covariance error of the weighted least squares
estimate given by

Σ̂
x
= σ

(
Φ⊤Σ−1

s Φ
)−1

, (31)

5The use of an HSMM encoding can autonomously regenerate
such sequence in a stochastic manner, which is not described here
due to space constraints.

where σ is a scale factor.6

The resulting GaussianN (x̂, Σ̂
x
) forms a trajectory dis-

tribution. Other forms of trajectory distributions can be
employed, where the main differences lie in the structure
given to Σ̂

x
and in the way the basis functions are de-

fined. A relevant example is the probabilistic movement
primitives approach proposed by Paraschos et al. [71].
The structure of the trajectory distribution defined in [71]
requires multiple trajectory demonstrations to avoid over-
fitting, but the problem can be circumvented by employing
factorization and variational inference techniques [76].

In trajectory-GMM, the problem of setting the shape
and spread of the basis functions, as well as the prob-
lem of determining the sparse structure of Σ̂

x
are directly

framed within the GMM likelihood maximization prob-
lem, allowing the use of an EM algorithm to automati-
cally organize the basis functions and find an appropriate
structure for Σ̂

x
, which will for example result in a sparse

band-diagonal structure when the components are suffi-
ciently decoupled, and which will account for the correla-
tions within ζt.

An illustration of the trajectory-GMM properties that
are of interest in robotics are shown in Fig. 8.

The combination of TP-GMM and trajectory-GMM is
achieved by augmenting the position data with its deriva-
tives (e.g., with velocity and acceleration), and defining
all task parameters At,j and bt,j so that they also ap-
ply to the derivatives. Compared to an initial TP-GMM
encoding x with task parameters AO

t,j and bO

t,j , the combi-
nation of TP-GMM and trajectory-GMM instead encodes

6Equations (30) and (31) describe a trajectory distribution, and
can be computed efficiently with Cholesky and/or QR decomposi-
tions by exploiting the positive definite symmetric band structure
of the matrices, see for example [87]. With the Cholesky decom-
position (Σs)−1 = T⊤T , the objective function is maximized when
TΦx = Tµs. With a QR decomposition TΦ = QR, the equation
becomes QRx = Tµs with a solution efficiently computed with
x = R−1Q⊤Tµs. When using Matlab, x̂ and Σ̂

x

in Equations (30)
and (31) can for example be computed with the lscov function.

12

ζ=
[
x⊤, ẋ⊤, ẍ⊤

]
⊤

with task parameters

At,j =

AO

t,j 0 0
0 AO

t,j 0
0 0 AO

t,j

 , bt,j =

bO

t,j

0
0

 . (32)

A Matlab/GNU Octave implementation of TP-GMM
with trajectory-GMM can be found in the example
demo TPtrajGMM01.m.
The corresponding example for standard mixture models
can also be found in demo trajGMM01.m and
demo trajMFA01.m.

5.3 Dynamic-based vs. time-based features in
GMM

GMR with time-indexed trajectories (Section 5.1) offers a
simple solution for the generation of trajectories from a
GMM, with the disadvantage that time-based GMR often
requires in practice a preprocessing step such as dynamic
time warping (DTW) to re-align multiple demonstrations
in time.
For the same reason, time-based GMR may also re-

duce the applicability of motion synthesis to more complex
forms of teaching interactions, such as learning recurring
patterns (combination of discrete and periodic motions),
or demonstrating different options in a movement. This
is not the case for trajectory-GMM that can handle these
two issues without further modification of the model (see
Section 5.2)). This is achieved at the expense of increasing
the GMM dimensionality (by encoding position, velocity
and acceleration instead of position and time as in time-
based GMR).
Another advantage of encoding dynamic features over

time features is that partial demonstrations can easily be
used in the training set, see Fig. 8. In service robotics ap-
plications, it can sometimes be difficult and inefficient to
demonstrate a complex manipulation task in a single shot.
A more user-friendly way would be to provide incremen-
tal corrections or piecewise demonstrations of whole body
movements, where the models can be trained with par-
tial chunks of the whole movement, see e.g. [54]. This is
also required in kinesthetic teaching with robots endowed
with a high number of articulations (since the user cannot
control all degrees of freedom at the same time with two
hands). Trajectory-GMM provides here a way to handle
partial demonstrations without further modification of the
model.

6 Extension to minimal intervention control

Previous sections discussed the problem of generating a
reference trajectory that can adapt to the current situa-
tion, by assuming that a controller is available to track the
retrieved reference trajectory. In this section, the problem
is extended to that of directly finding a controller to re-
produce the movement.
Section 2.2 showed that the objective function (3) un-

derlying TP-GMM aims at finding points ξt minimizing a
weighted sum of quadratic error terms, whose result corre-
sponds to a product of Gaussians. A similar function can

be defined for the search of a controller, whose objective
is to find a feedforward and feedback policy (instead of
finding a reference trajectory).
This section depicts the canonical problem of searching

a controller ut for the discrete linear dynamical system
(double integrator)

[
xt+1

ẋt+1

]

︸ ︷︷ ︸

ξt+1

=

[
I I∆t

0 I

]

︸ ︷︷ ︸

A

[
xt

ẋt

]

︸︷︷︸

ξt

+

[
0

I∆t

]

︸ ︷︷ ︸

B

ut. (33)

minimizing the cost

C =
(
ξ̂T−ξT

)⊤
Σ−1

sT

(
ξ̂T−ξT

)

+
T−1∑

t=1

((
ξ̂t−ξt

)⊤
Σ−1

st

(
ξ̂t−ξt

)
+ u⊤

tRt ut

)

=
(
µs − ζ

)
⊤

Σ−1
s

(
µs − ζ

)
+ U⊤R̃U , (34)

with µs ∈ R
TCD and Σs = blockdiag(Σs1 ,Σs2 , . . . ,ΣsT)

with Σs ∈ R
TCD×TCD defined as in Eq. (27), and R̃ =

blockdiag(R,R, . . . ,R) with R̃∈R(T−1)D×(T−1)D an ad-
ditional cost on the control inputs. The problem corre-
sponds to an unconstrained linear model predictive control
(MPC) problem.
It is worth noting that the objective function (29) used

in the context of GMM with dynamic features (see Section
5.2) is a special case of (34) with R̃=0.
We showed in [16] that TP-GMM can be used to find

a controller autonomously regulating the stiffness and
damping behavior of the robot, see also Fig. 2-(d). The
model shares links with optimal feedback control strate-
gies in which deviations from an average trajectory are
corrected only when they interfere with task performance,
resulting in a controller satisfying minimal intervention
principle [94, 103]. The approach also shares similarities
with the solution proposed by Medina et al. in the context
of risk-sensitive control for haptic assistance [62], by ex-
ploiting the predicted variability to form a minimal inter-
vention controller (in task space or in joint space). The re-
trieved variability and correlation information is exploited
to generate safe and natural movements within an opti-
mal control strategy, in accordance to the predicted range
of motion that could correctly reproduce the task in the
current situation. Indeed, we demonstrated in [16] that
TP-GMM is fully compatible with linear quadratic regu-
lation (LQR) strategies, providing a controller adapted to
the current situation with both impedance gains and ref-
erence trajectories varying with respect to external task
parameters.
The tracking problem can be solved by different tech-

niques, either exploiting tools from physics, dynamic pro-
gramming or linear algebra [6, 10]. It can for example
be solved with a batch approach by expressing all future
states xt as explicit function of the state x1. By writing

ξ2 = Aξ1 +Bu1,

ξ3 = Aξ2 +Bu2 = A(Aξ1 +Bu1) +Bu2,

...

ξT = AT ξ1 +AT−1Bu1 +AT−2Bu2 + · · ·+BuT

13

in a matrix form, we get

ξ1
ξ2
ξ3
...

ξT

︸ ︷︷ ︸

ζ

=

I

A

A2

...

AT

︸ ︷︷ ︸

Sξ

ξ1+

0 0 · · · 0
B 0 · · · 0
AB B · · · 0
...

...
. . .

...

AT−1B AT−2B · · · B

︸ ︷︷ ︸

Su

u1

u2

...

uT−1

︸ ︷︷ ︸

U

,

(35)
with ζ ∈ R

TCD, Sξ ∈ R
TCD×CD, ξ1 ∈ R

CD, Su ∈
R

TCD×(T−1)D and U ∈R(T−1)D.
Substituting (35) into (34), we get the cost function

C =
(
µs − Sξξ1 − SuU

)⊤
Σ−1

s

(
µs − Sξξ1 − SuU

)

+ U⊤R̃U . (36)

Differentiating with respect to U and equating to zero
yields the sequence of control inputs

Û =
(
Su⊤

Σ−1
s Su + R̃

)−1
Su⊤

Σ−1
s

(
µs − Sξξ1

)
, (37)

corresponding to a damped weighted least squares esti-
mate (ridge regression).
The sequence of acceleration commands (37) can either

be used as a planning technique to reconstruct a trajec-
tory with (35), or as a control technique to estimate feed-
forward and feedback terms for the current iteration.
The same controller can also be found iteratively with

a Riccati equation, see [16] for details.
It is worth noting that the constraint (33) defines the

same set of relations as (21) and (22) used in trajectory-
GMM (GMM with dynamic features). The main differ-
ence between the two problems is that trajectory-GMM
seeks for a reference trajectory, while the above problem
seeks for a controller. Both problems results in a weighted
least squares solution, with the difference that (37) uses
a Tikhonov regularization term corresponding to the cost
R that we set on the control inputs.

Matlab/GNU Octave implementations of GMM com-
bined with LQR can be found in the examples
demo batchLQR01.m and demo iterativeLQR01.m.
Additional examples can be found in
demo testLQR01.m - demo testLQR04.m.

Extension to multiple coordinate systems

The above optimal control problem can be extended to
reference trajectories expressed in P coordinate systems.
By extending the cost in (34) to

C̃ =

P∑

j=1

(

µ(j)
s − ζ

)
⊤

Σ(j)
s

−1
(

µ(j)
s − ζ

)

+U⊤R̃U , (38)

the sequence of control inputs becomes

Û =
(
Su⊤

Σ−1
s Su + R̃

)−1
Su⊤

Σ−1
s

(
µs − Sξξ1

)
,

with Σ−1
s =

P∑

j=1

Σ(j)
s

−1
, µs = Σs

P∑

j=1

Σ(j)
s

−1
µ(j)

s .

whose intermediary variables µs and Σs correspond to
the Gaussian resulting from the product of Gaussians with

centers µ
(j)
s and covariances Σ(j)

s . Namely, solving

Û=argmin
U

P∑

j=1

(

µ(j)
s −ζ

)
⊤

Σ(j)
s

−1
(

µ(j)
s −ζ

)

+U⊤R̃U

is equivalent to the two step optimization process

µs = argmin
ζ

P∑

j=1

(

µ(j)
s − ζ

)
⊤

Σ(j)
s

−1
(

µ(j)
s − ζ

)

,

Û = argmin
U

(
µs − ζ

)
⊤

Σ−1
s

(
µs − ζ

)
+ U⊤R̃U ,

showing that the combination of TP-GMM with LQR cor-
responds to an optimal controller acting in multiple coor-
dinate systems.

The problem can be viewed as a form of inverse opti-
mal control (IOC) [1, 2, 24], or more precisely, as a rudi-
mentary form of IOC which can be solved analytically.
Namely, it can provide a controller without exploratory
search, at the expense of being restricted to simple forms
of objectives (weighted sums of quadratic errors whose
weights are learned from the demonstrations). This dual
view can be exploited in further research to bridge action-
level and goal-level imitation, or to provide better initial
estimates in IOC problems.

Fig. 9 shows that a TP-GMM with a single Gaussian,
combined with a minimal intervention controller based on
LQR, can be used to encode and retrieve various behav-
iors.

Matlab/GNU Octave implementations of TP-GMM com-
bined with linear quadratic optimal control can be found
in demo TPbatchLQR01.m and
demo TPbatchLQR02.m.
Additional examples with iterative computation (with fi-
nite or infinite horizon) instead of batch computation can
be found in demo TPGMR LQR01.m and
demo TPGMR LQR02.m, with as baseline comparison in
demo TPGMR DS01.m (controller with predefined gains).

7 Extension to task parameters in the form of
projection constraints

Thus far, this tutorial considered problems in which the
task parameters were related to position, orientation or
shape of objects in a Cartesian space. However, the use of
TP-GMM is not limited can be extended to other forms of
locally linear transformations or projections. The consid-
eration of non square At,j matrices is for example relevant
for the consideration of soft constraints in both configura-
tion and operational spaces (through Jacobian operators),
see [15] for a preliminary work in this direction.
It can also provide a principled way to learn nullspace

constraints in a probabilistic form. The different frames
correspond in this case to various candidate subspace pro-
jections of the movement, with statistical information ex-
tracted from the different projections.
An important and challenging category of applications

include the problems requiring priority constraints [96, 57,

14

Demonstration: holding a cup horizontally

Demonstration: holding a sugar cube above the cup

Reproduction with perturbation: holding a sugar cube above the cup

Reproduction with perturbation: holding a cup horizontally + holding a sugar cube above the cup

Figure 9: Learning of two behaviors with the Baxter robot at Idiap. The taught tasks consist of holding a cup
horizontally with one hand, and holding a sugar cube above the cup with the other hand. The demonstrations are
provided in two steps by kinesthetic teaching, namely, by holding the arms of the robot and moving them through
the task while the robot compensates for the effect of gravity on its limbs. This procedure allows the user to move
the robot arms without feeling their weight and without feeling the motors in the articulations, while the sensors
are used to record the movement. Here, the data are recorded in several frames of reference (top image). During
reproduction, the robot is controlled by following a minimal intervention principle, where the impedance parameters
of the robot (stiffness and damping of a virtual spring pulling the robot arms) are automatically set in accordance to
the extracted variation and coordination patterns. First sequence: Brief demonstration to show the robot how to hold
a cup horizontally. Second sequence: Brief demonstration to show how to hold a sugar cube above the cup. Third
sequence: Manual displacement of the left arm to test the learned behavior (the coordination of the two hands is
successfully retrieved). Last sequence: Combination of the two learned tasks within a minimal intervention controller.
Here, the user pushes the robot to show that the robot remains soft for perturbations that do not conflict with the
acquired task constraints (automatic exploitation of the redundant degrees of freedom that do not conflict with the
task).

15

37, 104, 77]. Such constraints can be learned and encoded
within a TP-GMM from an initial set of task hierarchies
given as potential candidates to describe the observed skill.
The probabilistic encoding is exploited here to discover in
which manner the subtasks are prioritized.

For a controller handling constraints both in configu-
ration and operational spaces, some of the most common
candidate projection operators are presented in Table 3,
covering a very wide range of robotics applications.

Note here that the Gaussian product is computed in
configuration space (q and x represent respectively poses
in joint space and task space). Eq. (39) describes joint
space constraints in a fixed frame. It corresponds to the
canonical frame defined by At,j = I (identity matrix)
and bt,j = 0. Eq. (40) describes absolute position con-

straints (in operational space), where J† is the Jacobian
pseudoinverse used as least-norm inverse kinematics solu-
tion. Note that Eq. (40) describes a moving frame, where
the task parameters change at each iteration (observation
of a changing pose in configuration space). Eq. (41) de-
scribes relative position constraints, where the constraint
in task space is related to an object described at each
time step t by a position bO

t and an orientation matrix
AO

t in task space. Eq. (42) describes nullspace/priority
constraints in joint space, with N = I−J†J a nullspace
projection operator. Eq. (43) describes absolute position
nullspace/priority constraints, where the secondary objec-
tive is described in task space (for a point in the kinematic
chain with corresponding Jacobian J̃). Finally, Eq. (44)
describes relative position nullspace/priority constraints.

The above equations can be retrieved without much
effort by discretizing (with an Euler approximation) the
standard inverse kinematics and nullspace control rela-
tions that can be found in most robotics textbooks, see
e.g. [5].

Fig. 10 shows an example of constraints in configura-
tion and operational spaces. The task requires the robot
to consider, in parallel and in series, constraints in task
space (pointing to objects) and in joint space (maintain-
ing a preferred posture). The frame in joint space is de-
fined by Eq. (42), the frames in task space are defined
by Eq. (41) for the two objects and by Eq. (40) for the
motion in the robot frame, with x encoding Euler angles
and J describing the orientation part of the end-effector
Jacobian.

Fig. 11 presents a TP-GMM example with task param-
eters taking the form of nullspace bases. The frames are
defined by Equations (41) and (44) with two different com-
binations of nullspaces and Jacobians corresponding to the
left and right arm.

Matlab/GNU Octave implementations of TP-GMM with
task parameters in both operational and configuration
spaces (including priority constraints) are provided in
demoIK pointing TPGMM01.m and
demoIK nullspace TPGMM01.m.

Figure 10: Example of TP-GMM with constraints in both
joint space (frame 1) and task space (frames 2-4). The task
consists of pointing at two objects (red and blue) and then
coming back to a neutral pose. Left: The demonstrations
show a preferred posture employed to complete the task
(first robot link oriented to the right and the other two
links oriented upwards). Right: Reproduction attempts
by synthesizing a motion for the newly encountered sit-
uations (new position of blue and red objects), which is
achieved through GMR. Each row in the graph shows the
configuration at a different time step of the movement.
We can see that the generated motion satisfies the demon-
strated constraints (pointing sequentially at the two ob-
jects while trying to maintain a preferred configuration in
joint space). Note here that the motion is generated in
an online manner, which allows the robot to handle ob-
jects that are moving during the execution of the pointing
gestures.

16

Table 3: Task parameters as candidate projection operators (with affine transformations defined by At,j and bt,j).

q̂
(j)
t,i = I µ

(j)
i + 0 (39)

q̂
(j)
t,i = J†(qt−1) µ

(j)
i + qt−1 − J†(qt−1)xt−1 (40)

q̂
(j)
t,i = J†(qt−1)A

O

t µ
(j)
i + qt−1 + J†(qt−1)

[
bO

t − xt−1

]
(41)

q̂
(j)
t,i = N(qt−1) µ

(j)
i + J†(qt−1)J(qt−1)qt−1 (42)

q̂
(j)
t,i = N(qt−1)J̃

†
(qt−1) µ

(j)
i + qt−1 −N(qt−1)J̃

†
(qt−1) xt−1 (43)

q̂
(j)
t,i = N(qt−1)J̃

†
(qt−1)A

O

t
︸ ︷︷ ︸

At,j

µ
(j)
i + qt−1+N(qt−1)J̃

†
(qt−1)

[
bO

t −xt−1

]

︸ ︷︷ ︸

bt,j

, (44)

Figure 11: Illustration of the encoding of priority constraints in a TP-GMM. The top row shows 3 demonstrations
with a bimanual robot composed of 5 articulations (the color goes from light gray to black to show the evolution of
the movement). The task consists of tracking two objects with the left and right end-effectors (the path of the objects
are depicted in red). In some parts of the demonstrations, the two objects could not be reached, and the demonstrator
either made a compromise (left graph), or gave priority to the left or right hand (middle and right graphs). The
bottom row shows reproduction attempts for new trajectories of the two objects. We can see that, although faced
with different situations, the priority constraints are reproduced similarly to the corresponding demonstrations.

17

Task-parameterized Gaussian mixture model (TP-GMM), see Section 3

Task-parameterized mixture of factor analyzers (TP-MFA) with d=1, see Section 4.2

Task-parameterized trajectory GMM (TP-trajGMM), see Section 5.2

Figure 12: Generalization capability of three model-based task-parameterized approaches. Each row shows the results
for a different approach, and each column shows a different situation (with increasing generalization complexity). In
each graph, the four demonstrations and the associated adapted model parameters are depicted in semi-transparent
colors.

18

Task-parameterized Gaussian process (TP-GP)

Task-parameterized locally weighted regression (TP-LWR)

Figure 13: Generalization capability of two data-driven task-parameterized approaches. Each row shows the results
for a different approach, and each column shows a different situation (with increasing generalization complexity). In
each graph, the four demonstrations and the associated adapted model parameters are depicted in semi-transparent
colors.

8 Comparisons with other task-adaptive ap-
proaches

This section aims at comparing different techniques to
adapt movements to new situations, by using the task
adaptation problem depicted in Figures 1 and 2.
Qualitative comparisons for the task-parameterized ap-

proaches presented throughout the article are presented in
Figures 12 and 13.
Fig. 12 shows that GMM/GMR MFA/GMR and

trajectory-GMM could all retrieve suitable trajectories for
each of the new situations.
Fig. 13 shows that the proposed task-parameterized ap-

proach can also be employed with data-driven encoding
strategies, at the expense of a slower reproduction process
that depends on the number of demonstrations. For this
simple dataset, a kernel-based approach (first row) gener-
ated new trajectories that are similar to the trajectories
generated by the weighted least-squares approach (second
row).

A Matlab/GNU Octave implementation of data-driven
task-parameterized approach is provided in
demo TPGP01.m.

The same task adaptation problem was also tested with
two baseline approaches that are described next.

8.1 Gaussian process regression (GPR) with tra-
jectory models

An alternative way of handling task-parameterized move-
ments is to fit a model to each demonstration and associate

it with a task-specific feature, goal, style variable or per-
ceptual feedback, see for example [29, 47, 59, 50, 97, 21,
44].

Such approach is typically better suited for task param-
eters that do not change during the demonstration. It can
be achieved in a non-parametric or parametric way, by ei-
ther encoding the relationships between the raw trajectory
variables and the task parameters (first row in Fig. 14),
or by encoding the relationships between the trajectory
model parameters and the task parameters (second row in
Fig. 14, see also Fig. 1).

In this second approach, the output variables Θ are the
model parameters and the query points Q are the task
parameters. The reproduction step consists of retrieving
new model parameters Θd from new task parameters Qd,
which can for example be achieved with Gaussian process
regression (GPR) [74]. After centering the training data,
the joint distribution of the demonstrated and new outputs
can be estimated as

[
Θ

Θd

]

= N

(

0,

[
K(Q,Q)+σ2I K(Q,Qd)

K(Qd,Q) K(Qd,Qd)

])

, (45)

where Q is the concatenation of query points qm, and Θ
the concatenation of outputs θm, with m∈{1, . . . ,M} (M
is the number of demonstrations). Squared exponential
covariance functions K are considered here.

By using the conditional probability property of normal
distributions, the expected outputs Θ̂ associated with the
new query points Qd is given by

Θ̂ = K(Qd,Q) [K(Q,Q)+σ2I]−1Θ, (46)

19

Gaussian process regression with raw trajectory encoding (GPR), see Section 8.1

Gaussian process regression with GMM trajectory encoding (GPR-GMM), see Section 8.1

Parametric Gaussian mixture model (PGMM), see Section 8.2

Figure 14: Generalization capability of three alternative approaches to task parameterization. Each row shows the
results for a different approach, and each column shows a different situation (with increasing generalization complexity).
In each graph, the four demonstrations and the associated adapted model parameters are depicted in semi-transparent
colors.

20

with the covariance of the prediction given by

Σ̂
Θ

= K(Qd,Qd)−K(Qd,Q)[K(Q,Q)+ σ2I]−1K(Q,Qd).
(47)

The above formulation can be used with various trajec-
tory models. For a fair comparison, GMM encoding of tra-
jectories was considered, with GMR used to regenerate the
trajectories. Thus, a GMM θm = {πi,m,µi,m,Σi,m}

K
i=1

is fit to each demonstration ξm, with associate query
point qm = {Am,j , bm,j}

P
j=1 describing the demonstra-

tion context. After all demonstrations are collected,
[K(Q,Q)+σ2I]−1Θ in Equations (45)-(46) can be pre-
computed.
During reproduction, a new query point Qd with Qd =

{Aj , bj}
P
j=1 is used to retrieve a new GMM using Eq. (46),

which is then used to retrieve a new trajectory through
GMR.
The first and second row of Fig. 14 show generaliza-

tion results for the use of GPR with a non-parametric
(first row) and parametric (second row) encoding of the
data. Although GPR can easily handle situations within
the range of the demonstrations, its generalization capa-
bility can degrade if the query points are too far from the
demonstrations (it collapses to an average of the models),
which is confirmed by the results of the experiment.

A Matlab/GNU Octave implementation of GPR with
trajectory models is provided in demo GPR01.m.

8.2 Parametric HMM/GMM (PHMM/PGMM)

Another approach to handle task-parameterized move-
ments is to encode all demonstrations in a single mixture
model, where each cluster in the mixture learns the rela-
tions between the task parameters and the motion. The
parametric hidden Markov model (PHMM) is a represen-
tative approach in this category. It was originally intro-
duced for recognition and prediction of gestures [102], and
extended in robotics to movement generation [105, 51].
We will refer to a parametric Gaussian mixture model
(PGMM) when the transition and initial state probabil-
ities are not taken into account in the likelihood estima-
tion.7

The original model modulates in each cluster the center
of a Gaussian distribution through an affine relationship
with the task parameters. This is achieved by concatenat-
ing the task parameters in a vectorQt as in the above, and
defining the centers of the Gaussians in a task-adaptive
manner with

µt,i = Zi

[
Q⊤

t , 1
]
⊤

, (48)

where Z̃i describe the model parameters to be estimated.
In the case of affine relationships, this can be done with
EM, see Appendix D for details. The other parameters of
the model are estimated as the standard GMM formula-
tion.
After having trained the model, each new set of task

parameters concatenated in Qt will provide new Gaussian

7Note here that the term parametric in PGMM/PHMM (referring
to task parameters) is ambiguous because a standard GMM can also
be described as being parametric (referring to model parameters).

centers µt,i in the GMM by using Eq. (48), where GMR
can then be used to retrieve a new trajectory.

The last row of Fig. 14 shows generalization results with
PGMM. The main drawback of this model is that only the
centers of the Gaussians are adapted to the current situa-
tion. The covariances are estimated as constant matrices
Σi, estimated with the standard EM procedure for GMM.
This limitation is confirmed in the experiment, where EM
often converged to local optima that were unable to ex-
tract the underlying structures of the task for the encoding
of continuous movements.

A Matlab/GNU Octave implementation of parametric
GMM is provided in demo stdPGMM01.m. Figures 12-14
were generated by using the Matlab/GNU Octave codes
benchmark DS *.m, with * to be replaced by the corre-
sponding method.

9 Discussion and future work

Recent service robots are provided with numerous and/or
high resolution sensors and actuators. This increase of
dimensionality is problematic in applications where the
sample size remains bounded by the cost of data ac-
quisition. There is a non-negligible number of applica-
tions that would require models capable of targeting wide-
ranging data. Namely, models that could start learning
from a small number of demonstrations, while still being
able to continue learning once more data become avail-
able. Robot learning from demonstration is one such field,
whose learning challenge often requires the design of ap-
propriate domain-specific priors to ensure that generaliza-
tion can be achieved from small training sets.

We showed throughout this article that an efficient and
versatile prior knowledge for task adaptation is to con-
sider that the task parameters describing the current sit-
uation (body and workspace configuration that the robot
encounters) can be represented as affine transformations
(including frames of reference, coordinate systems or pro-
jections).

The above prior requires the experimenter to provide
the robot with a set of candidate frames that could poten-
tially be relevant for the task. We showed that the repre-
sentation as affine transformations has a simple interpre-
tation, can be easily implemented, and remains valid for
a wide range of skills that a service robot can encounter.
It was shown in [4] that when frames are missing during
reproduction (e.g., when occlusions occur or when frames
are collected at different rates), the system is still able to
reproduce an appropriate behavior for the current circum-
stance.

A limitation of the current TP-GMM approach is
that it requires the experimenter to provide an ini-
tial set of frames that will act as candidate projec-
tions/transformations of the data that might potentially
be relevant for the task. The number of frames can be
overspecified by the experimenter (e.g., by providing an
exhaustive list), but it comes at the expense of requiring
more demonstrations to obtain sufficient statistics to dis-
card the frames that have no role in the task. The problem
is not different from the problem of selecting the variables

21

that will form the feature vectors fed to a learning pro-
cess. The only difference lies in the selection of frames
in the form of affine transformations that are most often
associated with easily interpretable behaviors.

In practice, the experimenter selects objects and loca-
tions in the robot kinematic chain that might be relevant
for the task, which are typically the end-effectors of the
robot, where tools, grippers or parts in contact with the
environment are mounted, see also discussion in [45].8 The
issue of predefining an initial set of frames is not restrictive
when the number of frames remains reasonably low (e.g.,
when they come from a set of predefined objects tracked
with visual markers in a lab setting). However, for percep-
tion in unconstrained environment, the number of frames
could grow quickly (e.g., detection of phantom objects),
while the number of demonstrations remains low. Fur-
ther work is thus required to detect redundant frames or
remove irrelevant frames, as well as to automatically de-
termine in which manner the frames are coordinated with
each other and locally contribute to the achievement of
the task. A promising route for further investigation is to
exploit the recent developments in multilinear algebra and
tensor analysis [85, 48] that exploit the multivariate struc-
ture of the data for statistical analysis and compression,
without transforming it to a matrix form (by processing
data jointly in spatial and spectral ways, instead of flat-
tening the higher-order tensor dataset).

In service robotics, movements often need to be ex-
pressed simultaneously in multiple coordinate systems,
and are stored as multidimensional arrays (tensor-variate
data). Multilinear algebra could thus provide a princi-
pled method to simultaneously extract eigenframes, eigen-
poses and eigentrajectories. Multiway analysis of tensor-
variate data offers a rich set of data decomposition tech-
niques, whose advantage has been demonstrated in com-
puter imaging fields such as face processing [98], video
analysis [107], geoscience [75] or neuroimaging [8], but
which remains an uncharted territory in robotics and mo-
tor skills learning.

Another open route for further investigation concerns
the use of a richer set of task parameters. A wide range
of motor skills could potentially be adapted to this frame-
work, by exploiting the functional nature of task parame-
ters to build models that learn the local structure of the
task from a low number of demonstrations. Indeed, most
task parameterization in robot control can be related to
some form of frames of reference, coordinate systems, pro-
jections or basis functions, where the involvement of the
frames can change during the execution of the task, with
transformations represented as locally linear projection
operators (e.g., Jacobians for inverse kinematics, kernel
matrix for nullspace projections, etc.). A wider range of
robot skills could be defined in such way, see e.g. the pos-
sible tasks described in §6.2.1 of [5].

The potential applications are diverse, with an objec-
tive in line with the original purpose of motor primitives
to be composed together serially or in parallel [28]. TP-
GMM could potentially be employed as a tool to revisit
existing robotics techniques in a probabilistic form. This

8Full end-effector poses or decoupled position and orientation can
be considered here.

includes the consideration of soft constraints in both con-
figuration and operational spaces, where the frames would
correspond to different subspace projections of the same
movement, with the extracted regularities employed to
learn bimanual tasks or whole-body movements.
One of the important next challenge in robot learning

will be to extend the concept of movement primitives to a
broader range of behaviors including impedance, reaction
and collaboration primitives.

10 Conclusion

In service robotics, movements often need to be modulated
by external parameters describing the current situation
(body and workspace configuration that the robot encoun-
ters). This tutorial showed that in many cases, the task
parameters can be represented as affine transformations.
Based on this prior assumption, a task-parameterized
model was presented by exploiting this structure to learn
a skill from a small number of demonstrations.
The proposed approach was implemented and tested

with various statistical encoding strategies, including stan-
dard mixture models, kernel approaches and subspace
clustering methods. It was shown that a wide variety of
problems in robotics can be reinterpreted by introducing
such relation between the task parameters and the model
parameters. The approach was demonstrated in a series of
control and planning problems in operational and configu-
ration spaces. Each section of the article was accompanied
with source codes to help the practitioners study, test and
extend the proposed approach.

Appendices

A Expectation-Maximization for TP-GMM pa-
rameters estimation

In order to estimate the parameters of a TP-GMM, the
following two steps are repeated until convergence.
E-step:

ht,i =

πi

P∏

j=1

N
(

X
(j)
t

∣
∣
∣ µ

(j)
i ,Σ

(j)
i

)

∑K

k=1 πk

P∏

j=1

N
(

X
(j)
t

∣
∣
∣ µ

(j)
k ,Σ

(j)
k

) . (49)

M-step:

πi ←

∑N

t=1 ht,i

N
, (50)

µ
(j)
i ←

∑N

t=1 ht,i X
(j)
t

∑N

t=1 ht,i

, (51)

Σ
(j)
i ←

∑N

t=1 ht,i

(

X
(j)
t − µ

(j)
i

)(

X
(j)
t − µ

(j)
i

)
⊤

∑N

t=1 ht,i

. (52)

In practice, it is recommended to start EM from a coarse
estimate of the parameters. For example, based on an
equal split in time of motion segments, based on a geomet-
ric segmentation with k-means [58], based on moments or

22

spectral approaches with circular covariances [84, 52, 42],
or based on an iterative clustering algorithm [82].
Model selection (i.e., determining the number of Gaus-

sians in the GMM) is compatible with the techniques em-
ployed in standard GMM, such as the use of a Bayesian in-
formation criterion [81], Dirichlet process [73, 22, 64, 49],
iterative pairwise replacement [82], spectral clustering [68,
84, 52], or based on segmentation points [55]. Model se-
lection in mixture modeling shares a similar core challenge
as that of data-driven sparse kernel regression techniques,
which requires to find the right bandwidth parameters to
select a subset of existing/new datapoints that are the
most representatives of the dataset.

B Expectation-Maximization for TP-MFA and
TP-MPPCA parameters estimation

In TP-MFA, the generative model for the j-th frame and
i-th mixture component assumes that a D-dimension ran-
dom vector X(j) is modeled using a d-dimension vector of
latent (unobserved) factors z(j)

X(j) = Λ
(j)
i z(j) + µ

(j)
i + ǫ

(j)
i , (53)

where µ
(j)
i ∈ R

D is the mean vector of the i-th factor an-
alyzer, z(j)∼N (0, I) (the factors are assumed to be dis-
tributed according to a zero-mean normal with unit vari-

ance), and ǫ
(j)
i ∼ N (0,Ψ

(j)
i) is a centered normal noise

with diagonal covariance Ψ
(j)
i .

This diagonality is a key assumption in factor analysis.
Namely, the observed variables are independent given the
factors, and the goal of TP-MFA is to best model the co-
variance structure of X(j). It follows from this model that
the marginal distribution of X(j) for the i-th component
is

X(j) ∼ N
(

µ
(j)
i , Λ

(j)
i Λ

(j)
i

⊤

+Ψ
(j)
i

)

, (54)

and the joint distribution of X(j) and z(j) is

[

X(j)

z(j)

]

∼ N

([

µ
(j)
i

0

]

,

[

Λ
(j)
i Λ

(j)
i

⊤

+Ψ
(j)
i Λi

Λ
(j)
i

⊤

I

])

. (55)

The above can be used to show that the d factors are in-
formative projections of the data, which can be computed
by Gaussian conditioning, corresponding to the affine pro-
jection

E

(

z(j)|X(j)
)

=

B
(j)
i

︷ ︸︸ ︷

Λ
(j)
i

⊤
(

Λ
(j)
i Λ

(j)
i

⊤

+Ψ
(j)
i

)−1 (

µ
(j)
i −X

(j)
)

.

(56)
As highlighted by [32], the same process can be used to

estimate the second moment of the factors
E

(

z(j)z(j)⊤|X(j)
)

, which provides a measure of uncer-

tainty in the factors that has no analogue in PCA. This re-
lation can be exploited to derive an EM algorithm (see for
example [32] or [61]) to train a TP-MFA model of K com-

ponents with parameters
{
πi, {µ

(j)
i ,Λ

(j)
i ,Ψ

(j)
i }

P
j=1

}K

i=1
,

yielding an EM parameters estimation strategy.
The following two steps are repeated until convergence.

E-step:

ht,i =

πi

P∏

j=1

N
(

X
(j)
t

∣
∣
∣ µ

(j)
i , Λ

(j)
i Λ

(j)
i

⊤

+Ψ
(j)
i

)

∑K

k=1 πk

P∏

j=1

N
(

X
(j)
t

∣
∣
∣ µ

(j)
k , Λ

(j)
k Λ

(j)
k

⊤

+Ψ
(j)
k

) .

(57)

M-step:

πi ←

∑N

t=1 ht,i

N
, (58)

µ
(j)
i ←

∑N

t=1 ht,iX
(j)
t

∑N

t=1 ht,i

, (59)

Λ
(j)
i ← S

(j)
i B

(j)
i

⊤
(

I −B
(j)
i Λ

(j)
i +B

(j)
i S

(j)
i B

(j)
i

⊤
)−1

,

(60)

Ψ
(j)
i ← diag

(

diag
(
S

(j)
i −Λ

(j)
i B

(j)
i S

(j)
i

))

, (61)

computed with the help of the intermediary variables

S
(j)
i =

∑N

t=1 ht,i

(

X
(j)
t − µ

(j)
i

)(

X
(j)
t − µ

(j)
i

)
⊤

∑N

t=1 ht,i

, (62)

B
(j)
i = Λ

(j)
i

⊤
(

Λ
(j)
i Λ

(j)
i

⊤

+Ψ
(j)
i

)−1

. (63)

Alternatively, an update step simultaneously computing

µ
(j)
i and Λ

(j)
i can be derived, see [32] for details.

Similarly, the M-step in TP-MPPCA is given by

Λ̃
(j)

i ← S
(j)
i Λ

(j)
i

(

Iσ
(j)
i

2
+M

(j)
i

−1
Λ

(j)
i

⊤

S
(j)
i Λ

(j)
i

)−1

,

(64)

Ψ
(j)
i ← Iσ

(j)
i

2
, (65)

computed with the help of the intermediary variables

S
(j)
i =

∑N

t=1 ht,i

(

ξ
(j)
t − µ

(j)
i

)(

ξ
(j)
t − µ

(j)
i

)
⊤

∑N

t=1 ht,i

, (66)

M
(j)
i = Λ

(j)
i

⊤

Λ
(j)
i + Iσ

(j)
i

2
, (67)

σ
(j)
i

2
=

1

D
tr
(

S
(j)
i − S

(j)
i Λ

(j)
i M

(j)
i

−1
Λ̃

(j)

i

⊤)

, (68)

where Λ
(j)
i is replaced by Λ̃

(j)

i at each iteration, see [93]
for details.

C Gaussian mixture regression approximated by
a single normal distribution

Let us consider a datapoint ξt distributed as in Eq. (6),
with P(ξt) = P(ξI

t , ξ
O

t) the joint distribution describing
the data. The conditional probability of an output given
an input is

P(ξO

t |ξ
I

t) =
P(ξI

t , ξ
O

t)

P(ξI

t)
=

∑K

i=1 P(ξ
I

t , ξ
O

t |zi)P(zi)

P(ξI

t)
, (69)

23

where zi represents the i-th component of the GMM.
Namely,

P(ξO

t |ξ
I

t) =
K∑

i=1

P(ξO

t |ξ
I

t , zi)
P(ξI

t |zi)P(zi)

P(ξI

t)

=

K∑

i=1

hi(ξ
I

t) N
(

µ̂O

i (ξ
I

t), Σ̂
O

i

)

. (70)

The conditional mean can be computed as

µ̂O

t = E(ξO

t |ξ
I

t) =

∫

ξO

t P(ξ
O

t |ξ
I

t) dξ
O

t

=

∫

ξO

t

K∑

i=1

hi(ξ
I

t) N
(

µ̂O

i (ξ
I

t), Σ̂
O

i

)

dξO

t

=

K∑

i=1

hi(ξ
I

t) µ̂
O

i (ξ
I

t). (71)

In order to evaluate the covariance, we calculate

cov(ξO

t |ξ
I

t) = E(ξO

t ξ
O

t
⊤

|ξI

t)− E(ξO

t |ξ
I

t)E(ξ
O

t
⊤

|ξI

t). (72)

We have that

E(ξO

t ξ
O

t
⊤

|ξI

t) =

∫

ξO

t ξ
O

t
⊤

P(ξO

t |ξ
I

t) dξ
O

t

=

∫ K∑

i=1

hi(ξ
I

t) ξ
O

t ξ
O

t
⊤

N
(

µ̂O

i (ξ
I

t), Σ̂
O

i

)

dξO

t

=
K∑

i=1

hi(ξ
I

t)

∫

ξO

t ξ
O

t
⊤

N
(

µ̂O

i (ξ
I

t), Σ̂
O

i

)

dξO

t .

(73)

By using Eq. (72) with a Gaussian distribution, we ob-
tain

E(ξO

t ξ
O

t
⊤

|ξI

t) =
K∑

i=1

hi(ξ
I

t)Σ̂
O

i +

K∑

i=1

hi(ξ
I

t) µ̂
O

i (ξ
I

t) µ̂
O

i (ξ
I

t)
⊤

.

(74)

Combining (72) with (74) we finally have that (see also
[90])

Σ̂O

t = cov(ξO

t |ξ
I

t) =
K∑

i=1

hi(ξ
I

t)
(

Σ̂
O

i +µ̂O

i (ξ
I

t) µ̂
O

i (ξ
I

t)
⊤

)

−µ̂O

t µ̂
O

t
⊤

.

(75)

D Expectation-Maximization for parametric
GMM parameters estimation

The following two steps are repeated until convergence,
see [102] for details.

E-step:

ht,i =
πiN

(
ξt
∣
∣ µt,i,Σi

)

∑K

k=1 πkN
(
ξt
∣
∣ µt,k,Σk

) . (76)

M-step:

πi ←

∑N

t=1 ht,i

N
, (77)

Zi ←

(
N∑

t=1

ht,i ξt
[
Q⊤

t , 1
]

)(
N∑

t=1

ht,i

[
Q⊤

t , 1
]
⊤
[
Q⊤

t , 1
]

)−1

,

(78)

Σi ←

∑N

t=1 ht,i (ξt − µt,i)(ξt − µt,i)
⊤

∑N

t=1 ht,i

, (79)

where µt,i = Zi

[
Q⊤

t , 1
]
⊤

.

(80)

References

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via
inverse reinforcement learning. In Proc. Intl Conf.
on Machine Learning (ICML), 2004.

[2] B. Akgun and A. Thomaz. Simultaneously learning
actions and goals from demonstration. Autonomous
Robots, pages 1–17, 2015.

[3] A. Alissandrakis, C. L. Nehaniv, and K. Dauten-
hahn. Action, state and effect metrics for robot imi-
tation. In Proc. IEEE Intl Symp. on Robot and Hu-
man Interactive Communication (Ro-Man), pages
232–237, Hatfield, UK, September 2006.

[4] T. Alizadeh, S. Calinon, and D. G. Caldwell. Learn-
ing from demonstrations with partially observable
task parameters. In Proc. IEEE Intl Conf. on
Robotics and Automation (ICRA), pages 3309–3314,
Hong Kong, China, May-June 2014.

[5] G. Antonelli. Underwater Robots. Springer Interna-
tional Publishing, 2014. 3rd Edition.

[6] K. J. Astrom and R. M. Murray. Feedback Sys-
tems: An Introduction for Scientists and Engineers.
Princeton University Press, Princeton, NJ, USA,
2008.

[7] J. Baek, G. J. McLachlan, and L. K. Flack. Mix-
tures of factor analyzers with common factor load-
ings: Applications to the clustering and visualiza-
tion of high-dimensional data. IEEE Trans. Pattern
Anal. Mach. Intell., 32(7):1298–1309, 2010.

[8] P. J. Basser and S. Pajevic. A normal distribution
for tensor-valued random variables: applications to
diffusion tensor MRI. IEEE Trans. on Medical Imag-
ing, 22(7):785–794, July 2003.

[9] Y. Bengio. Learning deep architectures for ai.
Found. Trends Mach. Learn., 2(1):1–127, January
2009.

[10] F. Borrelli, A. Bemporad, and M. Morari. Predictive
Control for linear and hybrid systems. Cambridge
University Press, 2015. In preparation.

24

[11] C. Bouveyron and C. Brunet. Model-based cluster-
ing of high-dimensional data: A review. Computa-
tional Statistics and Data Analysis, 71:52–78, March
2014.

[12] C. Bouveyron, S. Girard, and C. Schmid. High-
dimensional data clustering. Computational Statis-
tics and Data Analysis, 52(1):502–519, 2007.

[13] M. Brand and A. Hertzmann. Style machines. In
Proc. ACM Intl Conf. on Computer graphics and In-
teractive Techniques (SIGGRAPH), pages 183–192,
New Orleans, Louisiana, USA, July 2000.

[14] S. Calinon, T. Alizadeh, and D. G. Caldwell.
On improving the extrapolation capability of
task-parameterized movement models. In Proc.
IEEE/RSJ Intl Conf. on Intelligent Robots and Sys-
tems (IROS), pages 610–616, Tokyo, Japan, Novem-
ber 2013.

[15] S. Calinon and A. G. Billard. Statistical learning by
imitation of competing constraints in joint space and
task space. Advanced Robotics, 23(15):2059–2076,
2009.

[16] S. Calinon, D. Bruno, and D. G. Caldwell. A task-
parameterized probabilistic model with minimal in-
tervention control. In Proc. IEEE Intl Conf. on
Robotics and Automation (ICRA), pages 3339–3344,
Hong Kong, China, May-June 2014.

[17] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Cald-
well, and A. G. Billard. Learning and reproduction
of gestures by imitation: An approach based on hid-
den Markov model and Gaussian mixture regression.
IEEE Robotics and Automation Magazine, 17(2):44–
54, June 2010.

[18] S. Calinon, F. Guenter, and A. G. Billard. On learn-
ing, representing and generalizing a task in a hu-
manoid robot. IEEE Trans. on Systems, Man and
Cybernetics, Part B, 37(2):286–298, 2007.

[19] S. Calinon, P. Kormushev, and D. G. Caldwell.
Compliant skills acquisition and multi-optima pol-
icy search with EM-based reinforcement learning.
Robotics and Autonomous Systems, 61(4):369–379,
April 2013.

[20] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis,
and D. G. Caldwell. Statistical dynamical systems
for skills acquisition in humanoids. In Proc. IEEE
Intl Conf. on Humanoid Robots (Humanoids), pages
323–329, Osaka, Japan, 2012.

[21] C. L. Campbell, R. A. Peters, R. E. Bodenheimer,
W. J. Bluethmann, E. Huber, and R. O. Ambrose.
Superpositioning of behaviors learned through tele-
operation. IEEE Trans. on Robotics, 22(1):79–91,
2006.

[22] S. P. Chatzis, D. Korkinof, and Y. Demiris. A non-
parametric Bayesian approach toward robot learn-
ing by demonstration. Robotics and Autonomous
Systems, 60(6):789–802, 2012.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin. Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society
B, 39(1):1–38, 1977.

[24] A. Doerr, N. Ratliff, J. Bohg, M. Toussaint, and
S. Schaal. Direct loss minimization inverse opti-
mal control. In Proc. Robotics: Science and Systems
(R:SS), pages 1–9, Rome, Italy, July 2015.

[25] S. Dong and B. Williams. Learning and recognition
of hybrid manipulation motions in variable environ-
ments using probabilistic flow tubes. Intl Journal of
Social Robotics, 4(4):357–368, 2012.

[26] M. Field, D. Stirling, Z. Pan, and F. Naghdy. Learn-
ing trajectories for robot programing by demonstra-
tion using a coordinated mixture of factor analyzers.
IEEE Trans. on Cybernetics, 2015.

[27] M. A. T. Figueiredo and A. K. Jain. Unsuper-
vised learning of finite mixture models. IEEE Trans.
Pattern Anal. Mach. Intell., 24(3):381–396, March
2002.

[28] T. Flash and B. Hochner. Motor primitives in ver-
tebrates and invertebrates. Current opinion in neu-
robiology, 15(6):660–666, 2005.

[29] D. Forte, A. Gams, J. Morimoto, and A. Ude. On-
line motion synthesis and adaptation using a trajec-
tory database. Robotics and Autonomous Systems,
60(10):1327–1339, 2012.

[30] S. Furui. Speaker-independent isolated word recog-
nition using dynamic features of speech spectrum.
IEEE Trans. on Acoustics, Speech, and Signal Pro-
cessing, 34(1):52–59, 1986.

[31] M. J. F. Gales. Semi-tied covariance matrices for
hidden markov models. IEEE Trans. on Speech and
Audio Processing, 7(3):272–281, 1999.

[32] Z. Ghahramani and G. E. Hinton. The EM algo-
rithm for mixtures of factor analyzers. Technical
report, University of Toronto, 1997.

[33] Z. Ghahramani and M. I. Jordan. Supervised learn-
ing from incomplete data via an EM approach. In
Jack D. Cowan, Gerald Tesauro, and Joshua Alspec-
tor, editors, Advances in Neural Information Pro-
cessing Systems (NIPS), volume 6, pages 120–127,
San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers, Inc.

[34] N. Greggio, A. Bernardino, P. Dario, and J. Santos-
Victor. Efficient greedy estimation of mixture mod-
els through a binary tree search. Robotics and Au-
tonomous Systems, 62(10):1440–1452, 2014.

[35] D. B. Grimes, R. Chalodhorn, and R. P. N. Rao.
Dynamic imitation in a humanoid robot through
nonparametric probabilistic inference. In Proc.
Robotics: Science and Systems (R:SS), pages 1–8,
2006.

25

[36] R. Gross and J. Shi. The CMU motion of body
(MoBo) database. Technical Report CMU-RI-TR-
01-18, Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, June 2001.

[37] S. Hak, N. Mansard, O. Stasse, and J. P. Laumond.
Reverse control for humanoid robot task recogni-
tion. IEEE Trans. on Systems, Man, and Cybernet-
ics, Part B: Cybernetics, 42(6):1524–1537, Decem-
ber 2012.

[38] M. Hersch, F. Guenter, S. Calinon, and A. G. Bil-
lard. Learning dynamical system modulation for
constrained reaching tasks. In Proc. IEEE Intl Conf.
on Humanoid Robots (Humanoids), pages 444–449,
Genova, Italy, December 2006.

[39] M. Hersch, F. Guenter, S. Calinon, and A. G. Bil-
lard. Dynamical system modulation for robot learn-
ing via kinesthetic demonstrations. IEEE Trans. on
Robotics, 24(6):1463–1467, 2008.

[40] G. E. Hinton. Learning multiple layers of representa-
tion. Trends in Cognitive Sciences, 11(10):428–434,
2007.

[41] N. Hogan and D. Sternad. Dynamic primitives of
motor behavior. Biological Cybernetics, 106(11–
12):727–739, 2012.

[42] D. Hsu and S. M. Kakade. Learning mixtures of
spherical Gaussians: Moment methods and spectral
decompositions. In Conf. on Innovations in Theo-
retical Computer Science, pages 11–20, 2013.

[43] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann,
and S. Schaal. Dynamical movement primitives:
Learning attractor models for motor behaviors. Neu-
ral Computation, 25(2):328–373, 2013.

[44] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura.
Embodied symbol emergence based on mimesis the-
ory. Intl Journal of Robotic Research, 23(4-5):363–
377, 2004.

[45] N. Jetchev and M. Toussaint. Discovering relevant
task spaces using inverse feedback control. Au-
tonomous Robots, 37(2):169–189, 2014.

[46] S. M. Khansari-Zadeh and A. Billard. Learning
stable non-linear dynamical systems with Gaus-
sian mixture models. IEEE Trans. on Robotics,
27(5):943–957, 2011.

[47] J. Kober, A. Wilhelm, E. Oztop, and J. Peters. Re-
inforcement learning to adjust parametrized motor
primitives to new situations. Autonomous Robots,
April 2012.

[48] T. Kolda and B. Bader. Tensor decompositions and
applications. SIAM Review, 51(3):455–500, 2009.

[49] S. Krishnan, A. Garg, S. Patil, C. Lea, G. Hager,
P. Abbeel, and K. Goldberg. Unsupervised surgical
task segmentation with milestone learning. In Proc.
Intl Symp. on Robotics Research (ISRR), 2015.

[50] K. Kronander, M. S. M. Khansari-Zadeh, and A. Bil-
lard. Learning to control planar hitting motions in a
minigolf-like task. In Proc. IEEE/RSJ Intl Conf. on
Intelligent Robots and Systems (IROS), pages 710–
717, 2011.

[51] V. Krueger, D. L. Herzog, S. Baby, A. Ude, and
D. Kragic. Learning actions from observations:
Primitive-based modeling and grammar. IEEE
Robotics and Automation Magazine, 17(2):30–43,
2010.

[52] B. Kulis and M. I. Jordan. Revisiting k-means: New
algorithms via Bayesian nonparametrics. In Proc.
Intl Conf. on Machine Learning (ICML), 2012.

[53] M. L. Latash, J. P. Scholz, and G. Schoener. Motor
control strategies revealed in the structure of mo-
tor variability. Exerc. Sport Sci. Rev., 30(1):26–31,
2002.

[54] D. Lee and C. Ott. Incremental kinesthetic teach-
ing of motion primitives using the motion refinement
tube. Autonomous Robots, 31(2):115–131, 2011.

[55] S. H. Lee, I. H. Suh, S. Calinon, and R. Johansson.
Autonomous framework for segmenting robot tra-
jectories of manipulation task. Autonomous Robots,
38(2):107–141, February 2015.

[56] S. Levine, N. Wagener, and P. Abbeel. Learning
contact-rich manipulation skills with guided policy
search. In Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), pages 156–163, May 2015.

[57] R. Lober, V. Padois, and O. Sigaud. Multiple task
optimization using dynamical movement primitives
for whole-body reactive control. In Proc. IEEE Intl
Conf. on Humanoid Robots (Humanoids), Madrid,
Spain, 2014.

[58] J. B. MacQueen. Some methods for classification
and analysis of multivariate observations. In Proc.
of the 5th Berkeley Symp. on mathematical statistics
and probability, pages 281–297, 1967.

[59] T. Matsubara, S.-H. Hyon, and J. Morimoto.
Learning parametric dynamic movement primitives
from multiple demonstrations. Neural Networks,
24(5):493–500, June 2011.

[60] G. J. McLachlan, D. Peel, and R. W. Bean. Mod-
elling high-dimensional data by mixtures of factor
analyzers. Computational Statistics and Data Anal-
ysis, 41(3-4):379–388, 2003.

[61] P. D. McNicholas and T. B. Murphy. Parsimonious
Gaussian mixture models. Statistics and Computing,
18(3):285–296, September 2008.

[62] J. R. Medina, D. Lee, and S. Hirche. Risk-sensitive
optimal feedback control for haptic assistance. In
Proc. IEEE Intl Conf. on Robotics and Automation
(ICRA), pages 1025–1031, May 2012.

26

[63] S. Miller, M. Fritz, T. Darrell, and P. Abbeel.
Parametrized shape models for clothing. In Proc.
IEEE Intl Conf. on Robotics and Automation
(ICRA), pages 4861–4868, May 2011.

[64] T. M. Moldovan, S. Levine, M. I. Jordan, and
P. Abbeel. Optimism-driven exploration for nonlin-
ear systems. In Proc. IEEE Intl Conf. on Robotics
and Automation (ICRA), pages 3239–3246, Seattle,
WA, USA, May 2015.

[65] M. Mühlig, M. Gienger, and J. Steil. Interactive
imitation learning of object movement skills. Au-
tonomous Robots, 32(2):97–114, 2012.

[66] F. A. Mussa-Ivaldi. From basis functions to basis
fields: vector field approximation from sparse data.
Biological Cybernetics, 67(6):479–489, 1992.

[67] R. M. Neal and G. E. Hinton. A view of the EM al-
gorithm that justifies incremental, sparse, and other
variants. In Learning in graphical models, pages 355–
368. MIT Press, Cambridge, MA, USA, 1999.

[68] A. Ng, M. Jordan, and Y. Weiss. On Spectral Clus-
tering: Analysis and an algorithm. In T. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances
in Neural Information Processing Systems (NIPS),
pages 849–856. MIT Press, 2001.

[69] D. Nguyen-Tuong and J. Peters. Local Gaussian
process regression for real-time model-based robot
control. In Proc. IEEE/RSJ Intl Conf. on Intelligent
Robots and Systems (IROS), pages 380–385, 2008.

[70] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta,
B. Marthi, and A. G. Barto. Learning
grounded finite-state representations from unstruc-
tured demonstrations. The International Journal of
Robotics Research, 34(2):131–157, 2015.

[71] A. Paraschos, C. Daniel, J. Peters, and G. Neu-
mann. Probabilistic movement primitives. In Ad-
vances in Neural Information Processing Systems
(NIPS), pages 2616–2624. Curran Associates, Inc.,
2013.

[72] L. R. Rabiner. A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proc. IEEE, 77:2:257–285, February 1989.

[73] C. E. Rasmussen. The infinite Gaussian mixture
model. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 554–560. MIT Press,
2000.

[74] C. E. Rasmussen and C. K. I. Williams. Gaussian
processes for machine learning. MIT Press, Cam-
bridge, MA, USA, 2006.

[75] N. Renard, S. Bourennane, and J. Blanc-Talon. De-
noising and dimensionality reduction using multi-
linear tools for hyperspectral images. IEEE Geo-
science and Remote Sensing Letters, 5(2):138–142,
April 2008.

[76] E. Rueckert, J. Mundo, A. Paraschos, J. Peters, and
G. Neumann. Extracting low-dimensional control
variables for movement primitives. In Proc. IEEE
Intl Conf. on Robotics and Automation (ICRA),
pages 1511–1518, Seattle, WA, USA, 2015.

[77] M. Saveriano, S. An, and D. Lee. Incremental kines-
thetic teaching of end-effector and null-space motion
primitives. In Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), pages 3570–3575, 2015.

[78] S. Schaal and C. G. Atkeson. Constructive incre-
mental learning from only local information. Neural
Computation, 10(8):2047–2084, 1998.

[79] S. Schaal, P. Mohajerian, and A. J. Ijspeert. Dy-
namics systems vs. optimal control: a unifying view.
Progress in Brain Research, 165:425–445, 2007.

[80] J. P. Scholz and G. Schoener. The uncontrolled
manifold concept: identifying control variables for
a functional task. Experimental Brain Research,
126(3):289–306, 1999.

[81] G. Schwarz. Estimating the dimension of a model.
Annals of Statistics, 6(2):461–464, 1978.

[82] D. W. Scott and W. F. Szewczyk. From kernels to
mixtures. Technometrics, 43(3):323–335, 2001.

[83] J. A. Scott Kelso. Synergies: Atoms of brain and
behavior. Progress in Motor Control, pages 83–91,
2009.

[84] T. Shi, M. Belkin, and B. Yu. Data spectroscopy:
eigenspace of convolution operators and clustering.
The Annals of Statistics, 37(6B):3960–3984, 2009.

[85] M. Signoretto, R. Van de Plas, B. De Moor, and
J. A. K. Suykens. Tensor versus matrix comple-
tion: A comparison with application to spectral
data. IEEE Signal Processing Letters, 18(7):403–
406, July 2011.

[86] D. Sternad, S.-W. Park, H. Mueller, and N. Hogan.
Coordinate dependence of variability analysis. PLoS
Computational Biology, 6(4):1–16, 04 2010.

[87] G. Strang. Introduction to Applied Mathematics.
Wellesley-Cambridge Press, 1986.

[88] F. Stulp and O. Sigaud. Many regression algorithms,
one unified model - a review. Neural Networks,
69:60–79, September 2015.

[89] K. Sugiura, N. Iwahashi, H. Kashioka, and S. Naka-
mura. Learning, generation, and recognition of
motions by reference-point-dependent probabilistic
models. Advanced Robotics, 25(5), 2011.

[90] H. G. Sung. Gaussian Mixture Regression and Clas-
sification. PhD thesis, Rice University, Houston,
Texas, 2004.

27

[91] J. Tang, A. Singh, N. Goehausen, and P. Abbeel. Pa-
rameterized maneuver learning for autonomous he-
licopter flight. In Proc. IEEE Intl Conf. on Robotics
and Automation (ICRA), pages 1142–1148, May
2010.

[92] Y. Tang, R. Salakhutdinov, and G. Hinton. Deep
mixtures of factor analysers. In Proc. Intl Conf.
on Machine Learning (ICML), Edinburgh, Scotland,
2012.

[93] M. E. Tipping and C. M. Bishop. Mixtures of proba-
bilistic principal component analyzers. Neural Com-
putation, 11(2):443–482, 1999.

[94] E. Todorov and M. I. Jordan. Optimal feedback
control as a theory of motor coordination. Nature
Neuroscience, 5:1226–1235, 2002.

[95] K. Tokuda, T. Masuko, T. Yamada, T. Kobayashi,
and S. Imai. An algorithm for speech parameter
generation from continuous mixture HMMs with
dynamic features. In Proc. European Conference
on Speech Communication and Technology (EU-
ROSPEECH), pages 757–760, 1995.

[96] C. Towell, M. Howard, and S. Vijayakumar. Learn-
ing nullspace policies. In Proc. IEEE/RSJ Intl Conf.
on Intelligent Robots and Systems (IROS), pages
241–248, 2010.

[97] A. Ude, A. Gams, T. Asfour, and J. Morimoto.
Task-specific generalization of discrete and periodic
dynamic movement primitives. IEEE Trans. on
Robotics, 26(5):800–815, 2010.

[98] M. A. O. Vasilescu and D. Terzopoulos. Multilin-
ear analysis of image ensembles: TensorFaces. In
Computer Vision (ECCV), volume 2350 of Lecture
Notes in Computer Science, pages 447–460. Springer
Berlin Heidelberg, 2002.

[99] J. J. Verbeek, N. Vlassis, and B. Kroese. Efficient
greedy learning of gaussian mixture models. Neural
Computation, 15(2):469–485, 2003.

[100] S. Vijayakumar, A. D’souza, and S. Schaal. Incre-
mental online learning in high dimensions. Neural
Computation, 17(12):2602–2634, 2005.

[101] Y. Wang and J. Zhu. DP-space: Bayesian non-
parametric subspace clustering with small-variance
asymptotics. In Proc. Intl Conf. on Machine Learn-
ing (ICML), pages 1–9, Lille, France, 2015.

[102] A. D. Wilson and A. F. Bobick. Parametric hid-
den Markov models for gesture recognition. IEEE
Trans. on Pattern Analysis and Machine Intelli-
gence, 21(9):884–900, 1999.

[103] D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan.
Principles of sensorimotor learning. Nature Reviews,
12:739–751, 2011.

[104] S. Wrede, C. Emmerich, R. Ricarda, A. Nordmann,
A. Swadzba, and J. J. Steil. A user study on kines-
thetic teaching of redundant robots in task and con-
figuration space. Journal of Human-Robot Interac-
tion, 2:56–81, 2013.

[105] T. Yamazaki, N. Niwase, J. Yamagishi, and
T. Kobayashi. Human walking motion synthesis
based on multiple regression hidden semi-Markov
model. In Proc. Intl Conf. on Cyberworlds, pages
445–452, 2005.

[106] H. Zen, K. Tokuda, and T. Kitamura. Reformulat-
ing the HMM as a trajectory model by imposing ex-
plicit relationships between static and dynamic fea-
ture vector sequences. Computer Speech and Lan-
guage, 21(1):153–173, 2007.

[107] Q. Zhao, G. Zhou, T. Adali, L. Zhang, and A. Ci-
chocki. Kernelization of tensor-based models for
multiway data analysis: Processing of multidimen-
sional structured data. IEEE Signal Processing Mag-
azine, 30(4):137–148, 2013.

28

