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Abstract Task-parameterized models provide a representation of move-
ment/behavior that can adapt to a set of task parameters describing the
current situation encountered by the robot, such as location of objects
or landmarks in its workspace. This paper gives an overview of the task-

parameterized Gaussian mixture model (TP-GMM) presented in previous
publications, and introduces a number of extensions and ongoing challenges
required to move the approach toward unconstrained environments. In partic-
ular, it discusses its generalization capability and the handling of movements
with a high number of degrees of freedom. It then shows that the method is
not restricted to movements in task space, but that it can also be exploited
to handle constraints in joint space, including priority constraints.

1 Introduction

Robots are provided with an increasing number of sensors and actuators. This
trend introduces original challenges in machine learning, where the sample
size is often bounded by the cost of data acquisition, thus requiring models
capable of handling wide-ranging data. Namely, models that can start learn-
ing from a small number of demonstrations, while still being able to continue
learning when more data become available.

Robot learning from demonstration is one such field, which aims at pro-
viding end-users with intuitive interfaces to transfer new skills to robots.
The challenges in robot learning can often be reinterpreted as designing ap-
propriate domain-specific priors that can supply the required generalization
capability from small training sets. The position adopted in this paper is that:
1) generative models are well suited for robot learning from demonstration
because they can treat recognition, classification, prediction and synthesis
within the same framework; and 2) an efficient and versatile prior is to con-
sider that the task parameters describing the current situation (body and
workspace configuration encountered by the robot) can be represented as
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affine transformations (including frames of reference, coordinate systems or
projections).

By providing such structure to the skill generation problem, the role of
the experimenter is to provide the robot with a set of candidate frames (list
of coordinate systems) that could potentially be relevant for the task. This
paper will show that structuring the affine transformations in such way has a
simple interpretation, that it can be easily implemented, and that it remains
valid for a wide range of skills that a robot can experience.

The task-parameterized Gaussian mixture model (TP-GMM) was pre-
sented in [11, 8, 10] for the special case of frames of reference representing
rotations and translations in Cartesian space. The current paper discusses the
potentials of the approach and introduces several routes for further investi-
gation, aiming at applying the proposed technique to a wider range of affine
transformations (directly exploiting the considered application domain), in-
cluding constraints in both configuration and operational spaces, as well as
priority constraints. It also shows that the proposed method can be applied
to different probabilistic encoding strategies, including subspace clustering
approaches enabling the consideration of high dimension feature spaces. Ex-
amples are provided in simulations and on a real robot (transfer of manipu-
lation skills to the Baxter bimanual robot). Accompanying source codes are
available at http://www.idiap.ch/software/pbdlib/.

2 Adaptive models of movements

Task-parameterized models of movements/behaviors refer to representations
that can adapt to a set of task parameters describing for example the current
context, situation, state of the environment or state of the robot configura-
tion. The task parameters can for example refer to the variables collected
by the system to describe the position of objects in the environment. The
task parameters can be fixed during an execution trial or they can vary while
the motion is executed. The model parameters refer to the variables learned
by the system, namely, that are stored in memory (the internal representa-
tion of the movement). During reproduction, a new set of task parameters

(describing the present situation) is used to generate a new movement (e.g.,
adaptation to new position of objects).

Several denominations have been introduced in the literature to describe
these models, such as task-parameterized [40, 11] (the denomination that will
be used here), parametric [49, 26, 29] or stylistic [7]. In these models, the
encoding of skills usually serve several purposes, including classification, pre-
diction, synthesis and online adaptation. A taxonomy of task-parameterized
models is presented in [8], classifying existing methods in three broad cate-
gories: 1) Approaches employing M models for the M demonstrations, per-
formed in M different situations, see e.g. [16, 23, 29, 25, 45, 12, 21]; 2) Ap-
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proaches employing P models for the P frames of reference that are possibly
relevant for the task, see e.g. [32, 13]; 3) Approaches employing a single model
whose parameters are modulated by task parameters, see e.g. [49, 26, 20].

In the majority of these approaches, the retrieval of movements from the
model parameters and the task parameters is viewed as a standard regres-
sion problem. This generality might look appealing at first sight, but it also
limits the generalization scope of these models. Our work aims at increasing
the generalization capability of task-parameterized models by exploiting the
functional nature of the task parameters. The approach arose from the ob-
servation that the task parameters in robotics applications can most of the
time be related to some form of frames of reference, coordinate systems, basis
functions or local projections, whose structure can be exploited to speed up
learning and provide the robot with remarkable extrapolation capability.

2.1 Motivation

Fig. 1 Illustration of the overall approach (see main text for details). (a) Observation
of a task in different situations and generalization to new contexts. Multiple demon-
strations provide the opportunity to discern the structure of the task. (b) Probabilistic
encoding of continuous movements in multiple coordinate systems. (c) Exploitation of
variability and correlation information to adapt the motion to new situations. With
cross-situational observations of the same task, the robot is able to generalize the
skill to new situations. (d) Computation of the underlying optimal control strategy
driving the observed behavior.

The core of the approach is to represent an observed movement or behav-
ior as a spring-damper system with varying parameters, where a generative
model is used to encode the evolution of the attractor, and the variability
and correlation information is used to infer the impedance parameters of
the system. These impedance parameters figuratively correspond to the stiff-
ness of a spring and to the damping coefficient of a viscous damper, with
the difference that they can also be full stiffness and damping matrices. The
model shares links with optimal feedback control strategies in which devia-
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tions from an average trajectory are corrected only when they interfere with
task performance, resulting in a minimal intervention principle [43].

In its task-parameterized version, several frames of reference are interact-
ing with each other to describe tracking behaviors in multiple coordinate
systems, where statistical analysis from the perspective of each of these ob-
servers is used to estimate feedforward and feedback control terms with linear
quadratic optimal control. Fig. 1 presents an illustration of the overall ap-
proach, which can be decomposed into multiple steps, involving statistical
modeling, dynamical systems and optimal control.

2.2 Example with a single Gaussian

Fig. 2 Minimization of the objective function in Eq.
(3) composed of a weighted sum of quadratic er-
ror terms, whose result corresponds to a product
of Gaussians. It is easy to show that N

(
ξ̂t, Σ̂t

)

corresponds to the Gaussian outcoming from the

product of the two Gaussians N
(
ξ̂
(1)
t , Σ̂

(1)
t

)
and

N
(
ξ̂
(2)
t , Σ̂

(2)
t

)
.

Before presenting the details of the task-parameterized model, the ap-
proach is motivated by an introductory example with a single Gaussian.

Two frames will be considered, described respectively at each time step
t by {bt,1,At,1} and {bt,2,At,2}, representing the origin of the observer bt,j
and a set of basis vectors {e1, e2, ...} forming a transformation matrix At,j=
[e1,t,j , e2,t,j , · · · ].

A set of demonstrations is observed from the perspective of the two frames.
During reproduction, each frame expects the new datapoints to lie within the
same range as that of the demonstrations. IfN

(

µ(1),Σ(1)
)

andN
(

µ(2),Σ(2)
)

are the normal distributions of the observed demonstrations in the first and
second frames, the two frames respectively expect the reproduction attempt

to lie at the intersection of the distributions N
(

ξ̂
(1)
t , Σ̂

(1)
t

)

and N
(

ξ̂
(2)
t , Σ̂

(2)
t

)

.
These distributions can be computed with the linear transformation property
of normal distribution as

ξ̂
(1)
t = At,1 µ(1) + bt,1 , Σ̂

(1)
t = At,1 Σ(1)A⊤

t,1 , (1)

ξ̂
(2)
t = At,2 µ(2) + bt,2 , Σ̂

(2)
t = At,2 Σ(2)A⊤

t,2 . (2)
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A trade-off thus needs to be determined during reproduction to concord
with the distributions expected by each frame. The objective function can be
defined as the weighted sum of quadratic error terms

ξ̂t = argmin
ξt

2
∑

j=1

(

ξt−ξ̂
(j)
t

)⊤

Σ̂
(j)
t

−1(
ξt−ξ̂

(j)
t

)

. (3)

The above objective can easily be solved by differentiation, providing a
point ξ̂t, with an error defined by covariance Σ̂t. This estimate corresponds
to a product of Gaussians (intersection between the two Gaussians). Fig. 2
illustrates this process for one of the Gaussians of Fig. 1.

3 Task-parameterized Gaussian mixture model
(TP-GMM)

Fig. 3 Generalization capability of task-parameterized Gaussian mixture model.
Each graph shows a different situation with increasing generalization complexity. In
each graph, the four demonstrations and the associated adapted model parameters
are depicted in semi-transparent colors.

TP-GMM is a direct extension of the objective problem presented above,
by considering multiple frames and multiple clusters of datapoints (soft clus-
tering via mixture modeling). It probabilistically encodes the relevance of
candidate frames, which can change throughout the task. In contrast to ap-
proaches such as [33] that aim at extracting a single (most prominent) coor-
dinate system located at the end of a motion segment, the proposed approach
allows the superposition and transition of different coordinate systems that
are relevant for the task (parallel organization of behavior primitives, adapta-
tion to multiple viapoints in the middle of the movement, modulation based
on positions, orientations or geometries of objects, etc.).

Each demonstration m ∈ {1, ... ,M} contains Tm datapoints forming a

dataset of N datapoints {ξt}
N
t=1 with N=

∑M

m Tm. The task parameters are
represented by P coordinate systems, defined at time step t by {bt,j ,At,j}

P
j=1,

representing respectively the origin and the basis of the coordinate system.
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The demonstrations ξ ∈ R
D×N are observed from these different view-

points, forming P trajectory samples X(j) ∈ R
D×N . These samples can be

collected from sensors located at the frames, or computed with

X
(j)
t = A−1

t,j (ξt − bt,j). (4)

The parameters of the proposed task-parameterized GMM (TP-GMM)

withK components are defined by {πi, {µ
(j)
i ,Σ

(j)
i }Pj=1}

K
i=1 (πi are the mixing

coefficients, µ
(j)
i and Σ

(j)
i are the center and covariance matrix of the i-th

Gaussian component in frame j).
Learning of the parameters is achieved by log-likelihood maximization sub-

ject to the constraint that the data in the different frames arose from the same
source, resulting in an EM process iteratively updating the model parameters
until convergence, see [10] for details. Model selection (i.e., determining the
number of Gaussians in the GMM) is compatible with techniques employed in
standard mixture models (Bayesian information criterion [37], Dirichlet pro-

cess [34], small-variance asymptotics [27], etc.). For a movement in Cartesian
space with 10 demonstrations and 3 candidate frames, the overall learning
process typically takes 1-3 sec. The reproduction is much faster and can be
computed online (typically below 1 msec).

The learned model is then used to reproduce movements in other situations
(for new position and orientation of candidate frames). A new GMM with
parameters {πi, ξ̂t,i, Σ̂t,i}

K
i=1 can thus automatically be generated with

N
(

ξ̂t,i, Σ̂t,i

)

∝
P
∏

j=1

N
(

ξ̂
(j)
t,i , Σ̂

(j)
t,i

)

,

with ξ̂
(j)
t,i =At,jµ

(j)
i +bt,j , Σ̂

(j)
t,i =At,jΣ

(j)
i A⊤

t,j , (5)

where the result of the Gaussian product is given by

Σ̂t,i =
(

P
∑

j=1

Σ̂
(j)
t,i

−1)−1

, ξ̂t,i = Σ̂t,i

P
∑

j=1

Σ̂
(j)
t,i

−1
ξ̂
(j)
t,i . (6)

For computational efficiency, the above equations can be computed with
precision matrices instead of covariances.

Several approaches can be used to retrieve movements from the proposed
model. An option is to encode both static and dynamic features in the mix-
ture model to retrieve continuous behaviors [51, 39, 22]. An alternative option
is to encode time as additional feature in the GMM, and use Gaussian mix-

ture regression (GMR) [18] to retrieve continuous behaviors. Similarly, if the
evolution of a decay term is encoded instead of time, the system yields a
probabilistic formulation of dynamical movement primitives (DMP) [20], see
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[11] for details. Fig. 3 presents TP-GMR reproduction results for the example
in Fig. 1.

4 Extension to task-parameterized subspace clustering

Fig. 4 The mixture of factor analyzers (MFA) covers a wide range of covariance
structures for the modeling of the data, from diagonal covariances (left) to full co-
variances (right).

Classical model-based clustering will tend to perform poorly in high-
dimensional spaces. A simple way of handling this issue is to reduce the
number of parameters by considering diagonal covariances instead of full ma-
trices, which corresponds to a separated treatment of each variable. Although
common in robotics, such decoupling can be a limiting factor to encode move-
ments and sensorimotor streams, because it follows a strategy that is not
fully exploiting principles underlying coordination, motor skill acquisition
and action-perception couplings.

The rationale is that diagonal structures are unadapted to motor skill rep-
resentation because they do not encapsulate coordination information among
the control variables. The good news is that a wide range of mixture modeling
techniques exist between the encoding of diagonal and full covariances. At
the exception of [14] and [47], these techniques have only been exploited to a
limited extent in robot skills acquisition. They can be studied as a subspace
clustering problem, aiming to group datapoints such that they can be locally
projected in subspaces of reduced dimensionality. Such subspace clustering
helps the analysis of the local trend of the movement, while reducing the
number of parameters to be estimated, and ”locking” the most important
coordination patterns to efficiently cope with perturbations.

Several possible constraints can be considered, grouped in families such as
parsimonious GMM [6], mixtures of factor analyzers (MFA) [30] or mixtures

of probabilistic principal component analyzers [42]. Methods such as MFA
provide a simple approach to the problem of high-dimensional cluster analy-
sis with a slight modification of the generative model underlying the mixture
of Gaussians to enforce low-dimensional models (i.e., noninvasive regarding
the other methods used in the proposed framework). The basic idea of factor
analysis (FA) is to reduce the dimensionality of the data while keeping the
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observed covariance structure. MFA assumes for each component i a covari-
ance structure of the form Σi = ΛiΛ

⊤

i + Ψ i, where Λi ∈ R
D×d, known as

the factor loadings matrix, typically has d < D (providing a parsimonious
representation of the data), and a diagonal noise matrix Ψ i.

Fig. 4 shows that the covariance structure in MFA can span a wide range
of covariances.

The TP-GMM presented in Section 3 is fully compatible with the subspace
clustering approaches mentioned above. Bayesian nonparametric approaches
such as [48] can be used to simultaneously select the number of clusters and
the dimension of the subspace in each cluster.

The TP-MFA extension of TP-GMM opens several roads for further in-
vestigation. A possible extension is to use tied structures in the covariances
to enable the organization and reuse of previously acquired synergies [17].
Another possible extension is to enable deep learning techniques in task-
parameterized models. As discussed in [41], the prior of each FA can be
replaced by a separate second-level MFA that learns to model the aggre-
gated posterior of that FA (instead of the isotropic Gaussian), providing a
hierarchical structure organization where one layer of latent variables can be
learned at a time.

5 Extension to minimal intervention control

We showed in [10] that TP-GMM can be used to autonomously regulate the
stiffness and damping behavior of the robot, see also Fig. 1-(d). It shares
similarities with the solution proposed by Medina et al. in the context of
risk-sensitive control for haptic assistance [31], by exploiting the predicted
variability to form a minimal intervention controller (in task space or in joint
space). The retrieved variability and correlation information is exploited to
generate safe and natural movements within an optimal control strategy, in
accordance to the predicted range of motion to reproduce the task, evaluated
for the current situation. TP-GMM is fully compatible with linear quadratic

regulation (LQR) and model predictive control (MPC) [4], providing an ap-
proach to learn controllers adapted to the current situation, with feedforward
and feedback control commands varying in regard to external task parame-
ters, see [10] for details.

Fig. 5 demonstrates that a TP-GMM with a single Gaussian, combined
with an infinite-horizon LQR, can readily be used to represent various be-
haviors that directly exploit the torque control capability of the robot and
the redundancy, both at the level of the task and at the level of the robot
kinematic structure.

It is worth noting that each frame in the TP-GMM has an associated sub-
objective function as in Eq. (3), which aims at minimizing the discrepancy be-
tween the demonstrations and the reproduction attempt. By considering the
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Demonstrations

Reproductions

Fig. 5 Learning of two behaviors with the Baxter robot. The taught tasks consist
of holding a cup horizontally with one hand, and holding a sugar cube above the
cup with the other hand, where the two task primitives can be combined in paral-
lel. The demonstrations are provided in two steps by kinesthetic teaching, namely,
by holding the arms of the robot and moving them during the task while the robot
compensates for the effect of gravity. This procedure allows the user to move the
robot arms without feeling their weight and without feeling the motors in the articu-
lations, while the sensors are used to record position information. Here, the data are
recorded in several frames of reference (top image). During reproduction, the robot
is controlled by following a minimal intervention principle, where the computed feed-
forward and feedback control commands result in different levels of stiffness obeying
the extracted variation and coordination constraints of the task. First sequence: Brief
demonstration to show the robot how to hold a cup horizontally. Second sequence:
Brief demonstration to show how to hold a sugar cube above the cup. Third sequence:
Manual displacement of the left arm to test the learned behavior (the coordination
of the two hands was successfully learned). Last sequence: Combination of the two
learned task primitives. Here, the user pushes the robot to show that the robot re-
mains soft for perturbations that do not conflict with the acquired task constraints
(automatic exploitation of the redundant degrees of freedom that do not conflict with
the task).
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combination of these sub-objectives in the overall objective, the problem can
be viewed as a rudimentary form of inverse optimal control (IOC) [1]. This
form of IOC does not have external constraints and can be solved analytically,
which means that it can provide a controller without exploratory search, at
the expense of being restricted to simple forms of objectives (weighted sums
of quadratic errors whose weights are learned from the demonstrations). This
dual view can be exploited for further research in learning from demonstra-
tion, either to bridge action-level and goal-driven imitation, or to initialize
the search in IOC.

6 Extension to multimodal data and projection
constraints

Fig. 6 Illustration of the encoding of priority constraints in a TP-GMM. The top
row shows 3 demonstrations with a bimanual planar robot with 5 articulations. The
color of the robot changes from light gray to black with the movement. The task
consists of tracking two objects with the left and right hands (the path of the objects
are depicted in red). In some parts of the demonstrations, the two objects could not
be reached, and the demonstrator either made a compromise (left graph), or gave
priority to the left or right hand (middle and right graphs). The bottom row shows
reproduction attempts for new trajectories of the two objects. Although faced with
different situations, the priority constraints are reproduced in a similar fashion as in
the corresponding demonstrations.

TP-GMM is not limited to coordinate systems representing objects in
Cartesian space. It can be extended to other forms of locally linear transfor-
mations or projections, which opens many roads for further research.

The consideration of non-square At,j matrices is for example relevant to
learn and reproduce soft constraints in both configuration and operational
spaces (through Jacobian operators). With a preliminary model of task-
parameterized movements, we explored in [9] how a similar approach could
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be used to simultaneously learn constraints in joint space and task space.
The model also provides a principled way to learn priority constraints in a
probabilistic form (through nullspace operators). The different frames cor-
respond in this case to several subspace projections of the same movement,
whose relevance is estimated statistically from the demonstrations.

A wide range of motor skills could potentially be adapted to this frame-
work, by exploiting the functional nature of task parameters to build models
that learn the local structure of the task from a small number of demon-
strations. Indeed, most task parameterization in robot control can be related
to some form of frames of reference, coordinate systems or basis functions,
where the involvement of the frames can change during the execution of the
task, with transformations represented as local linear projection operators
(Jacobians for inverse kinematics, kernel matrices for nullspace projections,
etc.).

The potential applications are diverse, with an objective that is well in line
with the original purpose of motor primitives to be composed together seri-
ally or in parallel [15]. Further work is required to investigate in which man-
ner TP-GMM could be exploited to provide a probabilistic view of robotics
techniques that are in practice predefined, handled by ad hoc solutions, or
sometimes inefficiently set as hard constraints. This includes the considera-
tion of soft constraints in both configuration and operational spaces. A wide
range of robot skills can be defined in such way, see e.g. the possible tasks
described in §6.2.1 of [3]. In humanoids, the candidate frames could for ex-
ample be employed to learn the constraints of whole-body movements from
demonstration or experience, based on the regularities extracted from differ-
ent subspace projections.

An important category of applications currently attracting a lot of atten-
tion concerns the problems requiring priority constraints [44, 28, 19, 50, 36].
With an appropriate definition of the frames and with an initial set of can-
didate task hierarchies, such constraints can be learned and encoded within
a TP-GMM. Here, the probabilistic encoding is exploited to discover, from
statistical analysis of the demonstrations, in which manner each subtask is
prioritized.

For a controller handling constraints both in configuration and operational
spaces, the most common candidate projection operators can be defined as

q̂
(j)
t,i = I µ

(j)
i + 0 (7)

q̂
(j)
t,i = J†(qt−1) µ

(j)
i + qt−1 − J†(qt−1)xt−1 (8)

q̂
(j)
t,i = J†(qt−1)A

O

t µ
(j)
i + qt−1 + J†(qt−1)

[
bO

t − xt−1

]
(9)

q̂
(j)
t,i = N(qt−1) µ

(j)
i + J†(qt−1)J(qt−1)qt−1 (10)

q̂
(j)
t,i = N(qt−1)J̃

†
(qt−1) µ

(j)
i + qt−1 −N(qt−1)J̃

†
(qt−1) xt−1 (11)

q̂
(j)
t,i = N(qt−1)J̃

†
(qt−1)A

O

t
︸ ︷︷ ︸

At,j

µ
(j)
i + qt−1+N(qt−1)J̃

†
(qt−1)

[
bO

t −xt−1

]

︸ ︷︷ ︸

bt,j

, (12)
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covering a wide range of robotics applications.
Note here that the product of Gaussians is computed in configuration

space (q and x represent respectively poses in joint space and task space).
Eq. (7) describes joint space constraints in a fixed frame. It corresponds to
the canonical frame defined by At,j=I (identity matrix) and bt,j=0. Eq. (8)

describes absolute position constraints (in operational space), where J† is the
Jacobian pseudoinverse used as least-norm inverse kinematics solution. Note
that Eq. (8) describes a moving frame, where the task parameters change at
each iteration (observation of a changing pose in configuration space). Eq.
(9) describes relative position constraints, where the constraint in task space
is related to an object described at each time step t by a position bO

t and
an orientation matrix AO

t in task space. Eq. (10) describes nullspace/priority
constraints in joint space, with N=I−J†J a nullspace projection operator.
Eq. (11) describes absolute position nullspace/priority constraints, where the
secondary objective is described in task space (for a point in the kinematic
chain with corresponding Jacobian J̃). Finally, Eq. (12) describes relative
position nullspace/priority constraints.

The above equations can be retrieved without much effort by discretizing
(with an Euler approximation) the standard inverse kinematics and nullspace
control relations that can be found in most robotics textbooks, see e.g. [3].

Fig. 6 presents a TP-GMM example with task parameters taking the form
of nullspace bases. The frames are defined by Equations (9) and (12) with
two different combinations of nullspaces N and Jacobians J̃ corresponding
to the left and right arm.

7 Discussion and further work

A potential limitation of the current TP-GMM approach is that it requires
the experimenter to provide an initial set of frames that will act as candidate
projections/transformations of the data that can potentially be relevant for
the task. The number of frames can be overspecified by the experimenter
(e.g., by providing an exhaustive list), at the expense of potentially requiring
a large number of demonstrations to obtain sufficient statistics to discard
the frames that have no role in the task. The demonstrations must also be
sufficiently varied, which becomes more difficult as the number of candidate
frames increases. The problem per se is not different from the problem of
selecting the variables that will form the feature vector fed to a learning
system. The only difference here is that the initial selection of frames takes
the form of affine transformations instead of the initial selection of elements
in a feature vector.

In practice, the experimenter selects the list of objects or landmarks in
the robot workspace, as well as the locations in the robot kinematic chain
that might be relevant for the task, which are typically the end-effectors of
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the robot, where tools, grippers or parts in contact with the environment are
mounted. It should be noted here that if some frames of reference are missing
during reproduction (e.g., when occlusions occur or when frames are col-
lected at different rates), the system is still able to reproduce an appropriate
behavior given the circumstance, see [2] for details.

The issue of predefining an initial set of frames of reference is not restrictive
when the number of frames remains reasonably low (e.g., when they come
from a set of predefined objects tracked with visual markers in a lab setting).
However, for perception in more unconstrained environment, the number of
frames could potentially grow (e.g., detection of phantom objects), while the
number of demonstrations should remain low.

Further work is thus required to detect redundant frames or remove ir-
relevant frames, as well as to automatically determine in which manner the
frames are coordinated with each other and locally contribute to the achieve-
ment of the task. A promising route for further investigation is to exploit
the recent developments in multilinear algebra and tensor analysis [38, 24]
that exploit the multivariate structure of data for statistical analysis and
compression without transforming it to a matrix form.

In the proposed task-parameterized framework, the movement is expressed
simultaneously in multiple coordinate systems, and is stored as a multidi-
mensional array (tensor-variate data). This opens many roads for further
investigation, where multilinear algebra could provide a principled method
to simultaneously extract eigenframes, eigenposes and eigentrajectories. Mul-
tiway analysis of tensor-variate data could imaginably offer a rich set of data
decomposition techniques, which has been demonstrated in computer imag-
ing fields such as face processing [46], video analysis [52], geoscience [35] or
neuroimaging [5], but which remains an uncharted territory in robotics and
motor skills acquisition.

There are several other encoding methods that can be explored within
the proposed task-parameterized approach (e.g., with hidden Markov models

(HMM), with Gaussian processes (GP) or with other forms of trajectory
distributions). Indeed, it is worth noting that the approach is not restricted
to mixture models and can be employed with other representations as long
as a local measure of uncertainty is available.

8 Conclusion

An efficient prior assumption in robot learning from demonstration is to
consider that skills are modulated by external task parameters. These task
parameters often take the form of affine transformations, whose role is to de-
scribe the current situation encountered by the robot (body and workspace
configuration). We showed that this structure can be used with different
statistical modeling strategies, including standard mixture models and sub-
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space clustering. The approach can be used in a wide variety of problems in
robotics, by reinterpreting them with a structural relation between the task
parameters and the model parameters represented as candidate frames of ref-
erence. The rationale is that robot skills can often be related to coordinate
systems, basis functions or local projections, whose structure can be exploited
to speed up learning and provide robots with better generalization capabil-
ity. Early promises of the approach were discussed in a series of problems in
configuration and operational spaces, including tests on a Baxter robot.
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