
Incorporating set-based control within the

singularity-robust multiple task-priority inverse kinematics

Gianluca Antonelli, Signe Moe, Kristin Y. Pettersen

Abstract—Inverse kinematics is an active research domain
in robotics since several years due to its importance in multiple
robotics application. Among the various approaches, differen-
tial inverse kinematics is widely used due to the possibility to
real-time implementation. Redundant robotic systems exhibit
more degrees of freedom than those strictly required to execute
a given end-effector task, in such a case, multiple tasks can
be handled simultaneously in, e.g., a task-priority architecture.
This paper addresses the systematic extension of the multiple
tasks singularity robust solution, also known as Null-space
Based Behavioral control, to the case of set-based control tasks,
i.e., tasks for which a range, rather than a specific value, is
assigned. This is the case for several variables such as, for
example, mechanical joint limits of robotic arms as well as
obstacle avoidance for any kind of robots. Numerical validation
are provided to support the solution proposed.

I. INTRODUCTION

In the recent years robotic systems with a large number of

Degrees of Freedom (DOFs) are commonly used in several

applications beyond the original industrial environment [1].

Examples are the underwater [2], [3], aerial [4] or hu-

manoid [5].

Going out from the industrial, mainly structured, envi-

ronment requires algorithms able to deal with real-time

trajectory generation of the end-effector configuration. This

requirement, together with the assumption of non-trivial

robotic kinematic structure, practically imposes the use of

differential approaches. Unstructured and non-repetitive en-

vironments, however, require that the algorithms are able

to handle multiple control objectives such as, for example,

the mechanical joint limits, the avoidance of obstacles, the

orientation of directional sensors, the arm manipulability, etc.

In some cases it is of interest to assign a precise value

to the controlled variable such as, e.g., the end-effector

configuration while in some other it is of interest only to

keep the variable within a certain region of interest (area

of satisfaction according to [5]) such as in case of the joint

limits. We will refer to the latter as set-based control while

most of the literature uses the term inequality constraints due

to the fact that, when on the boundary of the set, an inequality

condition on the task space velocity holds. For the reasons

that will be explained in the paper, the term set-based task

will be preferred instead.

G. Antonelli is with the Department of Electrical and Information Engi-
neering, University of Cassino and Southern Lazio, Italy, and with ISME
(Integrated Systems for Marine Environment) antonelli@unicas.it.

S. Moe and K.Y. Pettersen are with the Center for Autonomous
Marine Operations and Systems (AMOS), Department of
Engineering Cybernetics, Norwegian University of Science and
Technology (NTNU), Trondheim, Norway {signe.moe,
kristin.y.pettersen}@itk.ntnu.no

In [6], the use of the pseudoinverse is first recognized

as a promising tool to achieve inverse kinematics in robotic

applications. In [7] the null-space projector is considered in

the solution to achieve secondary control objectives afforded

via a gradient-based approach. Secondary objectives are

defined and handled in a task-priority approach in [8], [9].

The work [10] extends this approach to multiple tasks. A first

attempt to enlarge the solution to systematically include also

inequality (or set-based) tasks is proposed in [11], further

improved in [5]. In [2] inequalities are handled too, in

the framework of task prioritization, by resorting to proper

activation and regularization functions. A recent application

is analyzed in [12].

Notice that the term hierarchy and priority are often used

as synonyms in the literature. In the following, the latter will

be used.

Starting from [8], a different path which guarantees sin-

gularity robustness is followed by [13], further extended and

analyzed to multiple tasks in priority in [14], [15], [16]. As

recognized in [11], inclusion of inequality constraints still

is missing for this approach. This paper covers this gap by

systematically handling them. A numerical case study shows

the effectiveness of the approach.

II. BACKGROUND

A. Singularity-robust-task-priority inverse kinematics

Let us define as σ(t) ∈ R
m the task variable to be con-

trolled and q(t)∈R
n the vector of the system configuration,

the following holds:

σ(t) = f(q(t)) (1)

with the corresponding differential relationship:

σ̇(t) =
∂f(q(t))

∂q
q̇(t) = J(q(t))q̇(t) , (2)

where J(q(t)) ∈ R
m×n is the configuration-dependent an-

alytical task Jacobian matrix and q̇(t) ∈ R
n is the system

velocity.

The value of n changes depending on the considered

robotic system, a classical industrial manipulator exhibits

n = 6, the underwater vehicle-manipulator system used

in the project TRIDENT [2] has n = 13, being 6 the

DOFs provided by the vehicle and 7 by the arm. Humanoids

exhibits values up to n = 30 [5].

Let us first assume a single m-dimensional task to be fol-

lowed, for which a desired values σdes(t)∈R
m is assigned.

The motion references qdes(t) ∈R
n for the robotic system

may be computed by integrate the locally inverse mapping



of (2) achieved imposing minimum-norm velocity [17]. The

following least-squares solution is given by (dependencies

are dropped out to increase readability):

q̇des = J†σ̇des = JT
(
JJT

)−1

σ̇des , (3)

where J†, implicitly defined in the above equation for full

rank matrices, is the right pseudoinverse of J ; in the general

case, the pseudoinverse is the matrix that satisfies the four

Moore-Penrose conditions [18].

The vector qdes achieved by time integral of (3) is prone

to drift, i.e., used back in eq. (1) it does not result in σdes.

A Closed Loop Inverse Kinematics (CLIK) version of the

algorithm is usually implemented [13], namely,

q̇des = J†
(
σ̇des +Λσ̃

)
= J†σ̇ref , (4)

where σ̃∈R
m is the task error defined as

σ̃=σdes−σ (5)

and Λ ∈ R
m×m is a positive-definite matrix of gains; the

reference signal σ̇ref embeds thus the closed loop action.

In case of system redundancy, i.e., if n > m, the classic

general solution contains a null projector operator [7]:

q̇des = J†σ̇ref +
(
In − J†J

)
q̇null, (6)

where In is the (n × n) Identity matrix and the vec-

tor q̇null ∈ R
n is an arbitrary system velocity vector. It

can be recognized that the operator
(
In − J†J

)
projects

a generic velocity vector in the null space of the Jacobian

matrix. This corresponds to generate a motion of the robotic

system that does not affect that of the given task. A classic

approach consists in using the null space projector to add to

the sole task a gradient based term to perform some kind of

optimization [19], [20].

For highly redundant systems, multiple tasks can be ar-

ranged in priority. Let us consider three tasks that will be

denoted with the subscript a, b and c, respectively:

σa = fa(q) ∈ R
ma (7)

σb = fb(q) ∈ R
mb (8)

σc = f c(q) ∈ R
mc . (9)

For each of the tasks a corresponding Jacobian matrix can

be defined, in detail Ja ∈ R
ma×n, Jb ∈ R

mb×n and Jc ∈
R

mc×n. Let us further define the corresponding null space

projectors for the first two tasks as

N a =
(
In − J†

aJa

)
(10)

Nb =
(
In − J

†
bJb

)
. (11)

Following the discussion in [14], [16], among the possible

generalization of the singularity-robust task priority inverse

kinematic solution proposed in [13], by defining Jab ∈
R

(ma+mb)×n as

Jab =

[
Ja

Jb

]
, Nab =

(
In − J

†
abJab

)
(12)

the following will be considered:

q̇des = J†
aσ̇a,ref︸ ︷︷ ︸
q̇

a,des

+Na J
†
bσ̇b,ref︸ ︷︷ ︸
q̇

b,des

+Nab J
†
cσ̇c,ref︸ ︷︷ ︸
q̇

c,des

(13)

where the definition of σ̇x,ref can be easily extrapolated

from (4), the reference vectors embed the positive definite

matricesΛa ∈ R
ma×ma , Λb ∈ R

mb×mb and Λc ∈ R
mc×mc ,

the priority of the tasks follows the increasing alphabetical

order, being a the highest-priority task. Eq. (13) also implic-

itly defines the joint velocities q̇x,des ∈ R
n that represent the

desired joint velocity of the x task as if it was alone.

The generalization to N tasks is straightforward: let us

assume that σy ∈ R
my is the N th task, moreover, the task

x precedes the task y in priority; in other words, the task x
is the N−1 th priority task. Equation (13) can be rewritten

as:

q̇des = J†
aσ̇a,ref +N aJ

†
bσ̇b,ref + · · ·+Nab...xJ

†
yσ̇y,ref

(14)

in which Nab...x is the Null space of the matrix

Jab...x =




Ja

Jb

...

Jx


 , (15)

B. Set-based definitions

The formulation above allows to control the defined vari-

ables to a desired, punctual, although time varying, value.

This is often an over constraint for the robotic system

in the sense that instead of exactly assign a value the

control problem is defined in reaching, or avoiding, a certain

region. Two classical although crucial examples concern

obstacle avoidance and mechanical joint limits. Additional

tasks might concern directional sensors such as, for example,

an end-effector mounted camera or a vehicle-fixed directional

communication device.

The mapping still is defined by eq. (1) for which σdes(t)
is not an analytical function but a set to own to, in detail, a

hyperrectangle in R
m:

σ(t) = f(q(t)) ∈ S (16)

When a task is satisfied no action is required to the robotic

system, i.e., the task is not explicitly included in the com-

putation of q̇des(t). The set S is defined by upper and

lower bounds on each of the component of the vector σ. By

considering, for example, a set limited only on one extreme

the following needs to be satisfied

σj(t) ≤ σmax,j . (17)

It is often useful to define a bearing area by resorting to

a threshold σε,j < σmax,j in order to define a set where

the task is close to be violated, i.e., it is active. Figure 1

graphically represents the above definitions. Notice that the

term active is not to be intended as in the active set method

for optimization problems of inequality constraints [21].



satisfied violated

inactive active

S

σε σmax

Fig. 1. Definition of the main regions of the set-based control for the
example of an upper bounded set

When the j component of the task lies in the bearing area,

it is necessary to push it away from the boundary, i.e., to

add an inequality constraint on the differential mapping of

the kind:

0 ≥ σ̇j(t) = J j(q(t))q̇(t) (18)

where Jj ∈ R
1×n is the corresponding row of the Jacobian

associated to (16).

When this constraint can not be fulfilled (in terms that

will be clarified in Section III) a vector q̇x,des needs to be

designed. One possibility is to select this velocity vector such

as its projection on the task space is null, i.e., to freeze the

task. The other possibility is to implement a feedback action

aiming at smoothly move the variable to σε.

It is worth noticing that values different from zero, bilat-

eral set definition or absence of the bearing area might be

easily considered if necessary. Also, each of the inequality

above defines an hyperplane in q̇ ∈ R
n when exactly

satisfied, i.e., with the equal sign.

A similar control problem is defined as inequality ob-

jective in [2] or inequality constraints in [11], [5]. The

term constraint is focusing the attention on the differential

relationship (18) while it is maybe important to keep in

mind that the main control objective is at configuration level.

The differential constraint, in fact, only arises when the task

variable is in the bearing or the violated areas and eq. (18)

is not satisfied. The latter, however, needs to be satisfied by

the overall solution, i.e., a-posteriori, not necessarily when

building the solution as done in [11]. This consideration

will naturally lead to the proposed solution discussed in the

Section III.

III. TASK-PRIORITY SET-BASED OBJECTIVES

In order to understand the proposed solution to handle set-

based control let us consider a simple case study. A n = 3
DOF generic robotic system for which we have defined 3

mono-dimensional tasks characterized by unitary gains λx

and constant desired value. At a certain time instant the

following Jacobians and errors hold:

task Jacobian σ̃ kind

a
[
1 0 1

]
0.01 equality

b
[
0 1 0

]
-0.005 set-based

c
[
1 1 0

]
-0.1 equality

and the second joint is close to its upper bound, i.e., we need

to activate it. By locally inverting each of the tasks alone we

can appreciate the velocity vectors required by each task

q̇a,des =



0.5

0

0.5


 q̇b,des =




0

−0.005

0


 q̇c,des =



−0.05

−0.05

0




which, mapped into the corresponding task spaces, gives

back the errors of the tables above.

Coherently with the task-priority strategy the second and

third third tasks need to be projected on the augmented

higher-priority null space, i.e.:

q̇des = q̇a,des +N aq̇b,des +Nabq̇c,des =




−0.02

−0.005

0.03





which corresponds to

σ̇a = Jaq̇des = .01 σ̇b = −0.005 σ̇c = −0.025

i.e., the primary exactly fullfilled, the set-based also due to

the orthogonality of the Jacobians and the third up to an error

of 0.075.
However, an a-posteriori reasoning leads to the conclusion

that the third task can be satisfied and the second, for this

specific configuration, may be simply ignored (notice the

null-space projector):

q̇des = q̇a,des +N aq̇c,des =



−0.02

−0.05

0.03


 .

which corresponds to

σ̇a = Jaq̇des = .01 σ̇b = −0.05 σ̇c = −0.07

i.e., the primary still exactly totally fullfilled and the third

with an improved accuracy since the error decreased from

0.075 to 0.03. In addition, it can be noticed that it helps the

second-priority, set-based, to move away from the boundary

(in fact, the secondary task is simply the joint position and

the constrain is thus: q̇2,des < 0). The key idea is that

the inclusion of the set-based tasks is not necessarily the

best idea since the test of its necessity needs to be done

a-posteriori, i.e., on the overall solution.

The generalization to a generic number of equality/set-

based tasks follows. Let us assume that a number ni of set-

based tasks is defined with a given priority for a total of p

tasks. At the generic sampling time eq. (16) is verified for

each, a number nset,a are active and should be considered

in the solution. However, instead of including each of the

set-based task, with the corresponding null-space projector,

we consider all the possible combinations of active/absent

inequalities, i.e., for 2nset,a cases, by computing the so-

lution (14). We thus have 2nset,a possible joint velocities

among which the solution needs to be selected a-posteriori.

The generalization to a different number of tasks or to a

different priority is then possible. The algorithm builds a set

of possible solutionsQ and null spacesN . The initial desired



velocity is zero and the null space projector is the Identity

matrix. Starting from the higher priority task, at each level

of priority, the following is implemented:

1: Initialize Q with one null n× 1 vector

2: Initialize N with one Identity matrix

3: for i = 1 to p do

4: Compute Jx

5: Compute q̇x,des according to eq. (4)

6: if i==set-based then

7: Qtemp = Q
8: Ntemp = N
9: end if

10: Update Q summing to each the vector q̇x,des pre-

multiplied by the corresponding null space projectors

in N
11: UpdateN properly including, in each, the contribution

of Jx

12: if i==set-based then

13: Q = Q
⋃
Qtemp

14: N = N
⋃
Ntemp

15: end if

16: end for

17: return Q {it contains 2nset,a elements}

It is now necessary to select the best velocity among the

possible solutions. A-posteriori it is sufficient to verify if a

set-based task need to be activated or if it can be relaxed.

Obviously, there is no guarantee that the lower priority tasks

are fullfilled since stability conditions arise [16], however, if

one of the potential velocities pushes away a set-based task

from the boundary the latter can be ignored.

Selection of the solution is achieved in two steps: a) all

the velocities that do not satisfy the set-based tasks put in the

top priorities are erased and b) the maximum-norm solution

of the remaining is selected.

Even if several top priority, set-based tasks are defined,

for example all the joint limits, it is appropriate to consider

them individually in order to handle only the critical joint and

leave the other the possibility to move. The worst case, all

the joint limits activated, would simply stop the robot motion

until the lower priority velocities do not push it away from

some limit.

The rational for picking the maximum-norm solution is

due to the observation that each null-space projection filter

out some velocity components and thus the less restrictive

solution is the one with largest norm. Different policies may

be adopted and are currently under investigation.

The proposed algorithm is thus deterministic, on the

contrary to [5], which is recursive. Also, with respect to [11]

and [22], together with [5] and [2], it does not need to have

the set-based tasks all at the higher priority levels. Finally,

with respect to [2], it never loses the priority among tasks.

IV. NUMERICAL VALIDATION

A simple 4-DOFs planar manipulator is considered to

illustrate the results. Despite the simplicity of the robotic

structure, all the considerations made in this paper arises.

A gymn test has been designed in order to stress the

algorithm by exciting several possible situations: several set-

based higher priority tasks needed, all the set-based higher

priority tasks excited (block of the robot for safety reason),

an equality and a set-based lower-priority task. Also, the

numerical values of the set boundaries as well as the desired

values have been widely varied. One single case study will

be reported here corresponding to:

pr. task type gain min max

1 mech. joint 1 set-based 2 −90
◦

90
◦

2 mech. joint 2 set-based 2 −100
◦

100
◦

3 mech. joint 3 set-based 2 −90
◦

90
◦

4 mech. joint 4 set-based 2 −120
◦

120
◦

5 e.e. obst. av. set-based 2 0.3m –

6 e.e. position equality 500 – –

7 e.e. orientation set-based 0.1 −45
◦

45
◦

Figure 2 shows the initial configuration, the blue line

denotes the desired end-effector’s path, it first goes up, then

moves to the opposite extreme and finally comes back to

the initial value. An animation of the simulation is available

http://webuser.unicas.it/lai/robotica/video/antonelli med15 01.avi.

It is suggested to watch the video before continuing the

reading to appreciate the movement.

The second link is red since it is intentionally placed in

the joint’s limit bearing area. An obstacle (dashed grey) is

also present in the environment.

Fig. 2. Initial configuration, the blue line denotes the desired end-effector’s
path, it first goes up, then moves to the opposite extreme and finally comes
back to the initial value. The second link is red since it is intentionally
placed in the joint’s limit bearing area. In dashed grey an obstacle

Figure 3 and 4 show two snapshots. It can be appreciated

that the manipulator moves with the second link in the bear-

ing area while following the desired end-effector trajectory

until it goes out of the workspace and 3 out of 4 joints are

in their corresponding bearing areas.

An additional snapshots is shown in figure 5 when the arm

is avoiding the obstacle.

Activations (in red) of the set-based tasks can be appreci-

ated by figure 6. It can be noticed that the equality task

is always active while the set-based are activated or not

http://webuser.unicas.it/lai/robotica/video/antonelli_med15_01.avi


Fig. 3. At t = 3 s the end-effector is following the trajectory with the
second joint always close to its mechanical limit and thus active

Fig. 4. At t = 7 s the desired trajectory is out of the workspace and 3 of
the 4 links are in their bearing area

Fig. 5. At t = 11.8 s the end-effector obstacle avoidance needs to be
activated

depending on the configuration. In particular, for t = 7 s the
arm is in the configuration shown in figure 4 with 3 joints

locked. For t = 12 s and t = 14 s the arm is avoiding the

obstacle.

0 5 10 15 20

time [s]

limit q1

limit q2

limit q3

limit q4

e.e. obst.

e.e. pos.

e.e. or.

Fig. 6. Task activation (in red) during the movement. The second joint is
intentionally in the bearing area at start, the equality task is marked as red
for all the movement. For t = 7 s the arm is in the configuration shown in
figure 4 with 3 joints locked. For t = 12 s and t = 14 s the arm is avoiding
the obstacle

Figure 7 shows the joints values with the corresponding

mechanical limits. The set-based control is nicely working

and keeping the joints all within their admissible values even

for stressing trajectories.

0 5 10 15 20

−150

−100

−50

0

50

100

150

time [s]

q
(t
)
[d
eg
]

Fig. 7. Joints variables (colored solid) with corresponding limits (corre-
sponding color, dashed). The activation can be appreciated

Distance from the obstacle, a lower-bounded set-based

control variable, is shown in Figure 8.

Figure 9 shows the end-effector tracking error. It can be

noticed that the error is significant when the higher-priority,

safety-related, tasks are active during obstacle avoidance or

when the joint limits prevent the robot to reach the desired

values.

V. CONCLUSIONS

This paper addressed the systematic extension of the

multiple tasks singularity robust solution, also known as

Null-space Based Behavioral control, to the case of set-based

control tasks, i.e., tasks for which a range, rather than a

specific value, is assigned.



0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

time [s]

d
is
ta
n
ce

fr
o
m

o
b
st
ac
le

[m
]

Fig. 8. End-effector distance from the obstacle (solid) with corresponding
limits (dashed)

0 5 10 15 20
−2

−1

0

1

2

0 5 10 15 20
−0.5

0

0.5

time [s]

time [s]

e.
e.

p
o
s.
er
ro
r
[m

]
d
es
.
an
d
re
al

p
o
s.
[m

]

Fig. 9. Desired and real end-effector position (top) and tracking errors
(bottom). Significant errors can be appreciated when the joint limits and the
obstacle avoidance limit the arm movement

The proposed algorithm has been widely tested on a simple

robotic structure and demonstrated to be efficient and to fit

nicely the NSB approach.

In this work no consideration has been made on the

computational load or on the possibility to speed up the

solution computation by adopting proper numerical algo-

rithms. In particular, it is known that it is possible to compute

recursively the null-space with respect to the number of

tasks [23]. In case an additional task needs to be add to

eq. (14), for example, the following might be adopted:

N ab...y = N ab...x

[
I − (JyNab...x)

†
(JyNab...x)

]
.

Future works concern analytical discussion, comparison

with the state of the art and test on more elaborated robotic

structures.

ACKNOWLEDGEMENTS

This work was supported by the Research Council of Norway

through the Center of Excellence funding scheme, project number

223254, by the Italian Ministero dell’Istruzione, dell’Università e

della Ricerca, PRIN 2010-2011 through the project MARIS (pro-

tocol 2010FBLHRJ) and by the European Community through the

projects ARCAS (FP7-287617), EuRoC (FP7-608849), DexROV

(H2020-635491) and AEROARMS (H2020-644271).

REFERENCES

[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: mod-
elling, planning and control. Springer Verlag, 2009.

[2] E. Simetti, G. Casalino, S. Torelli, A. Sperindé, and A. Turetta,
“Floating underwater manipulation: Developed control methodology
and experimental validation within the TRIDENT project,” Journal of

Field Robotics, vol. 31(3), pp. 364–385, 2013.
[3] G. Antonelli, Underwater robots. Heidelberg, D: Springer Tracts in

Advanced Robotics, Springer-Verlag, 3rd ed., January 2014.
[4] A. Jimenez-Cano, J. Martin, G. Heredia, and A. Ollero, “Control of

an aerial robot with multi-link arm for assembly tasks,” in 2013 IEEE

International Conference on Robotics and Automation, (Karlsruhe,
Germany), May 2013.

[5] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” Inter-

national Journal of Robotics Research, 2013.
[6] D. Whitney, “Resolved motion rate control of manipulators and human

prostheses,” IEEE Transactions on Man-Machine Systems, vol. 10,
no. 2, pp. 47–52, 1969.

[7] A. Liégeois, “Automatic supervisory control of the configuration and
behavior of muldibody mechanisms,” IEEE Transactions on Systems,

Man and Cybernetics, vol. 7, pp. 868–871, 1977.
[8] A. Maciejewski and C. Klein, “Obstacle avoidance for kinematically

redundant manipulators in dynamically varying environments,” The

International Journal of Robotics Research, vol. 4, no. 3, pp. 109–
117, 1985.

[9] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulators,” The International Journal

Robotics Research, vol. 6, no. 2, pp. 3–15, 1987.
[10] B. Siciliano and J.-J. Slotine, “A general framework for managing

multiple tasks in highly redundant robotic systems,” in Proceedings 5th
International Conference on Advanced Robotics, (Pisa, I), pp. 1211–
1216, 1991.

[11] O. Kanoun, F. Lamiraux, and P. Wieber, “Kinematic control of
redundant manipulators: Generalizing the task-priority framework to
inequality task,” Robotics, IEEE Transactions on, vol. 27, no. 4,
pp. 785–792, 2011.

[12] H. Azimian, T. Looi, and J. Drake, “Closed-loop inverse kinematics
under inequality constraints: Application to concentric-tube manipula-
tors,” in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ

International Conference on, pp. 498–503, IEEE, 2014.
[13] S. Chiaverini, “Singularity-robust task-priority redundancy resolution

for real-time kinematic control of robot manipulators,” IEEE Transac-

tions on Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997.
[14] N. Mansard and F. Chaumette, “Task sequencing for high-level sensor-

based control,” IEEE Transactions on Robotics and Automation,
vol. 23, no. 1, pp. 60–72, 2007.

[15] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The Null-Space-
based Behavioral control for autonomous robotic systems,” Journal

of Intelligent Service Robotics, vol. 1, pp. 27–39, Jan. 2008.
[16] G. Antonelli, “Stability analysis for prioritized closed-loop inverse

kinematic algorithms for redundant robotic systems,” IEEE Transac-
tions on Robotics, vol. 25, pp. 985–994, October 2009.

[17] B. Siciliano, “Kinematic control of redundant robot manipulators: A
tutorial,” Journal of Intelligent Robotic Systems, vol. 3, no. 3, pp. 201–
212, 1990.

[18] G. Golub and C. Van Loan, Matrix Computations. Baltimore, MD:
The Johns Hopkins University Press, third ed., 1996.

[19] Y. Nakamura, Advanced Robotics: Redundancy and Optimization.
Reading, MA: Addison-Wesley, 1991.

[20] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manip-

ulators. London, UK: Springer-Verlag, 2nd ed., 2000.
[21] J. Nocedal and S. Wright, Numerical Optimization 2nd. Heidelberg,

D: Springer, 2nd ed., 2006.
[22] M. de Lasa, I. Mordatch, and A. Hertzmann, “Feature-based loco-

motion controllers,” ACM Transactions on Graphics (TOG), vol. 29,
no. 4, 2010.

[23] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of

Humanoid Robotics, vol. 2, no. 04, pp. 505–518, 2005.


	Introduction
	Background
	Singularity-robust-task-priority inverse kinematics
	Set-based definitions

	Task-priority set-based objectives
	Numerical validation
	Conclusions
	References

